Plant Diversity ›› 2023, Vol. 45 ›› Issue (03): 326-336.DOI: 10.1016/j.pld.2022.10.004
• Articles • Previous Articles Next Articles
Yu-Wen Zhanga,b,c, Yu-Cen Shia,b,c, Shi-Bao Zhanga,b,d
Received:
2022-07-05
Revised:
2022-09-17
Online:
2023-07-06
Contact:
Shi-Bao Zhang,E-mail:sbzhang@mail.kib.ac.cn
Supported by:
Yu-Wen Zhanga,b,c, Yu-Cen Shia,b,c, Shi-Bao Zhanga,b,d
通讯作者:
Shi-Bao Zhang,E-mail:sbzhang@mail.kib.ac.cn
基金资助:
Yu-Wen Zhang, Yu-Cen Shi, Shi-Bao Zhang. Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile[J]. Plant Diversity, 2023, 45(03): 326-336.
Yu-Wen Zhang, Yu-Cen Shi, Shi-Bao Zhang. Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile[J]. Plant Diversity, 2023, 45(03): 326-336.
[1] Ambasht, P.K., Kayastha, A.M., 2002. Plant pyruvate kinase. Biol. Plant. 45 (1), 1-10. https://doi.org/10.1023/A:1015173724712. [2] Cai, Y.C., Li, S.F., Jiao, G.A., Sheng, Z.H., Wu, Y.W., Shao, G.N., Xie, L.H., Peng, C., Xu, J.F., Tang, S.Q., Wei, X.J., Hu, P.S., 2018. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnol. J. 16 (11), 1878-1891. https://doi.org/10.1111/pbi.12923. [3] Chen, W., Gong, L., Guo, Z.L., Wang, W.S., Zhang, H.Y., Liu, X.Q., Yu, S.B., Xiong, L.Z., Luo, J., 2013. A Novel Integrated method for large-scale detection, identification, and quantification of widely targeted metabolites:application in the study of rice metabolomics. Mol. Plant. 6 (6), 1769-1780. https://doi.org/10.1093/mp/sst080. [4] de Oliveira, M.V.V., Jin, X., Chen, X., Griffith, D., Batchu, S., Maeda, H.A., 2019. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. Plant J. 97 (5), 901-922. https://doi.org/10.1111/tpj.14169. [5] De Vos, R.C., Moco, S., Lommen, A., Keurentjes, J.J., Bino, R.J., Hall, R.D., 2007. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2 (4), 778-791. https://doi.org/10.1038/nprot.2007.95. [6] Guo, L.H., Qi, J.X., Du, D., Liu, Y., Jiang, X., 2020. Current advances of Dendrobium officinale polysaccharides in dermatology:a literature review. Pharm Biol. 58 (1), 664-673. https://doi.org/10.1080/13880209.2020.1787470. [7] Guo, X., Li, Y., Li, C.F., Luo, H.M., Wang, L.Z., Qian, J., Luo, X., Xiang, L., Song, J.Y., Sun, C., Xu, H.B., Yao, H., Chen, S.L., 2013. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene 527 (1), 131-138. https://doi.org/10.1016/j.gene.2013.05.073. [8] He, C.M., Zhang, J.X., Liu, X.C., Zeng, S.J., Wu, K.L., Yu, Z.M., Wang, X.J., da Silva, J.A.T., Lin, Z.J., Duan, J., 2015. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol. Biol. 88 (33), 219-231. https://doi.org/10.1007/s11103-015-0316-z. [9] He, L., Su, Q., Bai, L., Li, M.F., Liu, J.R., Liu, X.M., Zhang, C.Y., Jiang, Z.L., He, J., Shi, J.Y., Huang, S., Guo, L., 2020. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. Eur. J. Med. Chem. 204, 1-17. https://doi.org/10.1016/j.ejmech.2020.112530. [10] Holman, J.D., Tabb, D.L., Mallick, P., 2014. Employing proteowizard to convert raw mass spectrometry data. Curr. Protoc. Bioinformatics 46, 1-9. https://doi.org/10.1002/0471250953.bi1324s46. [11] Jander, G., Kolukisaoglu, U., Stahl, M., Yoon, G.M., 2020. Editorial:physiological aspects of non-proteinogenic amino acids in plants. Front. Plant Sci. 11, 1-3. https://doi.org/10.3389/fpls.2020.519464. [12] Jiao, C.Y., Song, C., Zheng, S.Y., Zhu, Y.P., Jin, Q., Cai, Y.P., Lin, Y., 2018. Metabolic profiling of Dendrobium officinale in response to precursors and methyl jasmonate. Int. J. Mol. Sci. 19 (3), 728-747. https://doi.org/10.3390/ijms19030728. [13] Kang, L.Q., Zhou, J.S., Wang, R., Zhang, X.W., Liu, C.C., Liu, Z.H., Yuan, S., 2019. Glucanase-induced stipe wall extension shows distinct differences from chitinase-induced stipe wall extension of Coprinopsis cinerea. Appl. Environ. Microb. 85 (21), 1345-1319. https://doi.org/10.1128/aem.01345-19. [14] Liu, Y.H., Rainey, P.B., Zhang, X.X., 2015. Molecular mechanisms of xylose utilization by Pseudomonas fluorescens:overlapping genetic responses to xylose, xylulose, ribose and mannitol. Mol. Microbiol. 98 (93), 553-570. https://doi.org/10.1111/mmi.13142. [15] Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 (4), 402-408. https://doi.org/10.1006/meth.2001.1262. [16] Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550-571. https://doi.org/10.1186/s13059-014-0550-8. [17] Mou, Z.M., Zhao, Y., Ye, F., Shi, Y.N., Kennelly, E.J., Chen, S.Y., Zhao, D.K., 2021. Identification, biological activities and biosynthetic pathway of Dendrobium alkaloids. Front. Pharmacol. 12, 1-14. https://doi.org/10.3389/fphar.2021.605994. [18] Ng, T.B., Liu, J., Wong, J.H., Ye, X., Wing Sze, S.C., Tong, Y., Zhang, K.Y., 2012. Review of research on Dendrobium, a prized folk medicine. Appl. Microbiol. Biot. 93 (5), 1795-1803. https://doi.org/10.1007/s00253-011-3829-7. [19] Pan, X.H., Li, Y.T., Pan, G.T., Yang, A.G., 2019. Bioinformatics study of 1-deoxy-d-xylulose-5-phosphate synthase (DXS) genes in Solanaceae. Mol. Biol. Rep. 46 (5), 5175-5184. https://doi.org/10.1007/s11033-019-04975-5. [20] Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33 (3), 290-295. https://doi.org/10.1038/nbt.3122. [21] Pfister, B., Zeeman, S., 2016. Formation of starch in plant cells. Cell. Mol. Life Sci. 73 (14), 2781-2807. https://doi.org/10.1007/s00018-016-2250-x. [22] Sato, K., Mase, K., Nakano, Y., Nishikubo, N., Sugita, R., Tsuboi, Y., Kajita, S., Zhou, J.M., Kitano, H., Katayama, Y., 2006. 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase is regulated for the accumulation of polysaccharide-linked hydroxycinnamoyl esters in rice (Oryza sativa L.) internode cell walls. Plant Cell Rep. 25 (7), 676-688. https://doi.org/10.1007/s00299-006-0124-7. [23] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (11), 2498-2504. https://doi.org/10.1101/gr.1239303. [24] Shen, C.J., Guo, H., Chen, H.L., Shi, Y.J., Meng, Y.J., Lu, J.J., Feng, S.G., Wang, H.Z., 2017. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci. Rep. 7 (1), 187-198. https://doi.org/10.1038/s41598-017-00292-8. [25] Tian, S.K., Wang, D.D., Yang, L., Zhang, Z.X., Liu, Y., 2021. A systematic review of 1-Deoxy-D-xylulose-5-phosphate synthase in terpenoid biosynthesis in plants. Plant Growth Regul. 1-15. https://doi.org/10.1007/s10725-021-00784-8. [26] Tohge, T., Watanabe, M., Hoefgen, R., Fernie, A., 2013. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 4 (62), 1-13. https://doi.org/10.3389/fpls.2013.00062. [27] Wang, Z.C., Zhao, M.L., Cui, H.Q., Li, J., Wang, M.N., 2020. Transcriptomic landscape of medicinal Dendrobium reveals genes associated with the biosynthesis of bioactive components. Front. Plant Sci. 11, 391-401. https://doi.org/10.3389/fpls.2020.00391. [28] Xu, J., Guan, J., Chen, X.J., Zhao, J., Li, S.P., 2011. Comparison of polysaccharides from different Dendrobium using saccharide mapping. J. Pharmaceut. Biomed. 55 (5), 977-983. https://doi.org/10.1016/j.jpba.2011.03.041. [29] Yu, C.M., Li, Y.W., Li, B., Liu, X., Hao, L.F., Chen, J., Qian, W.Q., Li, S.M., Wang, G.F., Bai, S.W., Ye, H., Qin, H.J., Shen, Q.H., Chen, L.B., Zhang, A., Wang, D., 2010. Molecular analysis of phosphomannomutase (PMM) genes reveals a unique PMM duplication event in diverse Triticeae species and the main PMM isozymes in bread wheat tissues. BMC Plant Biol. 10, 214-230. https://doi.org/10.1186/1471-2229-10-214. [30] Yu, C.M., Liu, X.Y., Zhang, Q., He, X.Y., Huai, W., Wang, B.H., Cao, Y.Y., Zhou, R., 2015. Molecular genetic analysis of phosphomannomutase genes in Triticum monococcum. Crop J. 3 (1), 29-36. https://doi.org/10.1016/j.cj.2014.07.003. [31] Yu, G., Wang, L.G., Han, Y., He, Q.Y., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. OMICS. 16 (5), 284-287. https://doi.org/10.1089/omi.2011.0118. [32] Yuan, Y.D., Yu, M.Y., Jia, Z.H., Song, X.E., Liang, Y.Q., Zhang, J.C., 2019a. Analysis of Dendrobium huoshanense transcriptome unveils putative genes associated with active ingredients synthesis. BMC Genom. 19 (1), 978-984. https://doi.org/10.1186/s12864-018-5305-6. [33] Yuan, Y.D., Yu, M.Y., Zhang, B., Liu, X., Zhang, J.C., 2019b. Comparative nutritional characteristics of the three major Chinese Dendrobium species with different growth years. PLoS One 14 (9), e0222666. https://doi.org/10.1371/journal.pone.0222666. [34] Yuan, Y.D., Zhang, J.C., Liu, X., Meng, M.J., Wang, J.P., Lin, J., 2020. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Genomics 112 (2), 1781-1794. https://doi.org/10.1016/j.ygeno.2019.10.010. [35] Yue, H., Zeng, H., Ding, K., 2020. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin. J. Nat. Medicines 18 (1), 1-27. https://doi.org/10.1016/S1875-5364(20)30001-7. [36] Zhang, J.X., He, C.M., Wu, K.L., da Silva, J.A.T., Zeng, S.J., Zhang, X.H., Yu, Z.M., Xia, H.Q., Duan, J., 2016. Transcriptome analysis of Dendrobium officinale and its application to the identification of genes associated with polysaccharide synthesis. Front. Plant Sci. 7, 5-18. https://doi.org/10.3389/fpls.2016.00005. [37] Zheng, Y.P., Jiang, W., Silva, E.N., Mao, L.Z., Hannaway, D., Lu, H.F., 2012. Optimization of shade condition and harvest time for Dendrobium candidum plants based on leaf gas excachange, alkaloids and polysaccharides contents. Plant Omics 5 (3), 253-260. [38] Ziveri, J., Tros, F., Guerrera, I.C., Chhuon, C., Audry, M., Dupuis, M., Barel, M., Korniotis, S., Fillatreau, S., Gales, L., Cahoreau, E., Charbit, A., 2017. The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella. Nat. Commun. 8, 853-868. https://doi.org/10.1038/s41467-017-00889-7. |
[1] | Shuo Feng (封烁), Haixia Ma (马海霞), Yu Yin (殷钰), Wei Wan (万薇), Kangshan Mao (毛康珊), Dafu Ru (汝大福). A complex interplay of genetic introgression and local adaptation during the evolutionary history of three closely related spruce species [J]. Plant Diversity, 2025, 47(04): 620-632. |
[2] | Jing Chen, Jingjing Cao, Binglin Guo, Meixu Han, Zhipei Feng, Jinqi Tang, Xiaohan Mo, Junjian Wang, Qingpei Yang, Yuxin Pei, Yakov Kuzyakov, Junxiang Ding, Naoki Makita, Xitian Yang, Haiyang Zhang, Yong Zhao, Deliang Kong. Increased dependence on mycorrhizal fungi for nutrient acquisition under carbon limitation by tree girdling [J]. Plant Diversity, 2025, 47(03): 466-478. |
[3] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species [J]. Plant Diversity, 2025, 47(01): 53-67. |
[4] | Yohannes Besufekad Setotaw, Jing Li, Jinfeng Qi, Canrong Ma, Mou Zhang, Cuilian Huang, Lei Wang, Jianqiang Wu. Salicylic acid positively regulates maize defenses against lepidopteran insects [J]. Plant Diversity, 2024, 46(04): 519-529. |
[5] | Zi-Yan Zhang, He-Xiao Xia, Meng-Jie Yuan, Feng Gao, Wen-Hua Bao, Lan Jin, Min Li, Yong Li. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut [J]. Plant Diversity, 2024, 46(03): 309-320. |
[6] | Shanni Cao, Xue Zhao, Zhuojin Li, Ranran Yu, Yuqi Li, Xinkai Zhou, Wenhao Yan, Dijun Chen, Chao He. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification [J]. Plant Diversity, 2024, 46(03): 372-385. |
[7] | Shiming Deng, Qiang Xiao, Cigui Xu, Jian Hong, Zhijun Deng, Dan Jiang, Shijia Luo. Metabolome profiling of stratified seeds provides insight into the regulation of dormancy in Davidia involucrata [J]. Plant Diversity, 2022, 44(04): 417-427. |
[8] | Ting Tang, Faqing Tao, Weiqi Li. Characterisation of manganese toxicity tolerance in Arabis paniculata [J]. Plant Diversity, 2021, 43(02): 163-172. |
[9] | Jun-Chu Peng, Xiang-Guang Ma, Yue-Hua Wang, Hang Sun. New insights into the evolutionary history of Megacodon: Evidence from a newly discovered species [J]. Plant Diversity, 2020, 42(03): 198-208. |
[10] | Yonglu Wei, Jianpeng Jin, Xiani Yao, Chuqiao Lu, Genfa Zhu, Fengxi Yang. Transcriptome Analysis Reveals Clues into leaf-like flower mutant in Chinese orchid Cymbidium ensifolium [J]. Plant Diversity, 2020, 42(02): 92-101. |
[11] | Yun Jia, Ji-Qing Bai, Mi-Li Liu, Zhen-Fang Jiang, Yan Wu, Min-Feng Fang, Zhong-Hu Li. Transcriptome analysis of the endangered Notopterygium incisum: Cold-tolerance gene discovery and identification of EST-SSR and SNP markers [J]. Plant Diversity, 2019, 41(01): 1-6. |
[12] | Ruisen Lu, Wuqin Xu, Qixiang Lu, Pan Li, Jocelyn Losh, Faiza Hina, Enxiang Li, Yingxiong Qiu. Generation and classification of transcriptomes in two Croomia species and molecular evolution of CYC/TB1 genes in Stemonaceae [J]. Plant Diversity, 2018, 40(06): 253-264. |
[13] | Tao Liu a, Xiaoxian Li b, Shiqing Xie a, Ling Wang a, Shengchao Yang a, *. RNA-seq analysis of Paris polyphylla var. yunnanensis roots identified candidate genes for saponin synthesis [J]. Plant Diversity, 2016, 38(03): 163-170. |
[14] | ZhAO Lei, Zachary LARSONRABIN, CHEN Si-Yun, GUO Zhen-Hua. Comparing De Novo Transcriptome Assemblers Using Illumina RNASeq Reads [J]. Plant Diversity, 2012, 34(5): 487-501. |
[15] | GUO Jie-, HE Hong-Ping-, LI Shun-Lin-, HUA Hui-Ming-, HAO Xiao-Jiang. A New Alkaloid from the Roots of Stemona tuberosa (Stemonaceae) [J]. Plant Diversity, 2010, 32(05): 463-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||