Plant Diversity ›› 2023, Vol. 45 ›› Issue (01): 6-19.DOI: 10.1016/j.pld.2022.10.002
• Research paper • Previous Articles Next Articles
Xing Liua, Hui-Min Caia, Wen-Qiao Wanga, Wei Lina, Zhi-Wei Sub, Zhong-Hui Maa
Received:
2022-04-27
Revised:
2022-10-04
Online:
2023-02-23
Contact:
Zhong-Hui Ma,E-mail:mazhonghui@gxu.edu.cn
Supported by:
Xing Liua, Hui-Min Caia, Wen-Qiao Wanga, Wei Lina, Zhi-Wei Sub, Zhong-Hui Maa
通讯作者:
Zhong-Hui Ma,E-mail:mazhonghui@gxu.edu.cn
基金资助:
Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae)[J]. Plant Diversity, 2023, 45(01): 6-19.
Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae)[J]. Plant Diversity, 2023, 45(01): 6-19.
[1] Areces-Berazain, Fabiola., James, D.Ackerman., 2017. Diversification and fruit evolution in eumalvoids (Malvaceae). Bot. J. Linn. Soc. 184, 401-417 [2] Beaulieu, J.M., Donoghue, M.J., 2013. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132-3144 [3] Bogert, C.M., 1949. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195-211 [4] Bollback, J.P., 2006. SIMMAP:stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 [5] Bouckaert, R., Heled, J., Kuhnert, D., et al. 2014. BEAST 2:a software platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10, e1003537 [6] Bramley, G.L.C., 2009. The genus Callicarpa (Lamiaceae) on Borneo. Bot. J. Linn. Soc. 159, 416-455 [7] Bramley, G.L.C., 2011. Distribution patterns in Malesian Callicarpa (Lamiaceae). Garden Bull. Singap. 63, 287-298 [8] Bremer, K., 1992. Ancestral areas:a cladistic reinterpretation of the center of origin concept. Syst. Biol. 41, 436-445 [9] Burns, K.C., 2015. The color of plant reproduction:macroecological trade-offs between biotic signaling and abiotic tolerance. Front. Ecol. Evol. 3, 118 [10] Campanella, J.J., Smalley, J.V., Dempsey, M.E., 2014. A phylogenetic examination of the primary anthocyanin production pathway of the Plantae. Bot. Stud. 55, 1-10 [11] Cantley, J.T., Markey A.S., Swenson, N.G., et al., 2016. Biogeography and evolutionary diversification in one of the most widely distributed and species rich genera of the Pacific. Aob Plants 8, 16 [12] Cantrell, C.L., Klun, J.A., Bryson, C.T., et al., 2005. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. J. Agr. Food Chem. 53, 5948-5953 [13] Cavanaugh, J.E., 1997. Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probabil. Lett. 33, 201-208 [14] Cazetta, E., Schaefer, H.M., Galetti, M., 2008. Does attraction to frugivores or defense against pathogens shape fruit pulp composition? Oecologia 155, 277-286 [15] Chalker-Scott, L., 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70, 1-9 [16] Chen, S.L., Michael, G.G., 1994. Flora of China, in:Wu Z. Y., & P. H. Raven (eds), Verbenaceae. Science Press & St. Louis:Missouri Botanical Garden Press, Beijing, pp. 25-79 [17] Chen, S.C., Cornwell, W.K., Zhang, H.X., et al., 2017. Plants show more flesh in the tropics:variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531-538 [18] Chung, I.M., Ali, M., Upadhayay, K., et al., 2005. Isolation and cytotoxic activity of acyclic triterpene callicarpenol from Callicarpa macrophylla. Asian J. Org. Chem. 17, 1907-1914 [19] Cuthill, I.C., 2015. Flower colour:Gloger's rule isn't just for the birds. Nat. Plants 1, 1-2 [20] Dodd, M.E., J, Silvertown., Chase, M.W., 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53, 732-744 [21] Donoghue, M.J., Smith, S.A., 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. T. R. Soc. B. 359, 1633-1644 [22] Doyle, J.J., Doyle, J.D., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15 [23] Drew, B.T., Sytsma, K.J., 2012. Phylogenetics, biogeography, and staminal evolution in the tribe mentheae (Lamiaceae). Am. J. Bot. 99, 933-953 [24] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973 [25] Ebersbach, J., Schnitzler, J., Favre, A., et al., 2017. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol. Biol. 17, 119 [26] Eriksson, O., B, Bremer., 1991. Fruit characteristics, life forms, and species richness in the plant family Rubiaceae. Am. Nat. 138, 751-761 [27] Fricke, E.C., Svenning, J.C., 2020. Accelerating homogenization of the global plant-frugivore meta-network. Nature 585, 74-78 [28] Gao, J., Liao, P.C., Huang, B.H., et al., 2020. Historical biogeography of Acer L. (Sapindaceae):genetic evidence for Out-of-Asia hypothesis with multiple dispersals to North America and Europe. Sci. Rep. 10, 1-10 [29] Glor, R.E., 2010. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41, 251-270 [30] Gould, K.S., 2004. Nature's Swiss army knife:the diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 314-320 [31] Harris, A.J., Xiang, Q.Y., 2009. Estimating ancestral distributions of lineages with uncertain sister groups:a statistical approach to Dispersal-Vicariance Analysis and a case using Aesculus L. (Sapindaceae) including fossils. J. Syst. Evol. 47, 349-368 [32] Harrison, T.M., Copeland, P., Kidd, W.S.F., et al., 1992. Raising tibet. Science 255, 1663-1670 [33] Herrera, C.M., 1989. Seed dispersal by animals:a role in angiosperm diversification? Am. Nat. 133, 309-322 [34] Hill, A.P., Jimenez, M.F.T., Chazot, N., et al., 2021. Fruit colour and range size interact to influence diversification. bioRxiv [35] Holt, B.G., Lessard, J.P., Borregaard, M.K., et al., 2013. Response to comment on "An update of Wallace's zoogeographic regions of the world". Science 341, 343-343 [36] Hughes, C., Eastwood, R., 2006. Island radiation on a continental scale:exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. U.S.A. 103, 10334-10339 [37] Hutter, C.R., Lambert, S.M., Wiens, J.J., 2017. Rapid diversification and time explain amphibian richness at different scales in the Tropical Andes, Earth's most biodiverse hotspot. Am. Nat. 190, 828-843 [38] Jaa, A.A., 2004. MrModeltest v. 2 (program distributed by the author) [39] Jafari, M., Ansari-Pour, N., 2019. Why, when and how to adjust your P values? Cell J. 20, 604 [40] Janson, C.H., 1983. Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science 219, 187-189 [41] Jansson, R., Davies, T.J., 2008. Global variation in diversification rates of flowering plants:energy vs. climate change. Ecol. Lett. 11, 173-183 [42] Jetz, W., Thomas, G.H., Joy, J.B., et al., 2012. The global diversity of birds in space and time. Nature 491, 444-448 [43] Jordano, P., Garcia, C., Godoy, J.A., et al., 2007. Differential contribution of frugivores to complex seed dispersal patterns. Proc. Natl. Acad. Sci. U.S.A. 104, 3278-3282 [44] Kar, R., 1996. On the Indian origin of Ocimum (Lamiaceae):A palynological approach. Palaeobotanist 43, 43-50 [45] Kemp, D.J., Herberstein, M.E., Fleishman, L.J., et al., 2015. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185:705-724 [46] Klaus, K.V., Matzke, N.J., 2020. Statistical comparison of trait-dependent biogeographical models indicates that podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 69, 61-75 [47] Kong, H., Condamine, F.L., Yang, L., et al., 2022. Phylogenomic and macro-evolutionary evidence for an explosive radiation of a plant genus in the Miocene. Syst. Biol. 71, 589-609 [48] Kozak, K.H., Wiens, J.J., 2016. Testing the relationships between diversification, species richness, and trait evolution. Syst. Biol. 65, 975-988 [49] Lagomarsino, L.P., Condamine, F.L., Antonelli, A., et al., 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430-1442 [50] Landis, M.J., Matzke, N.J., Moore, B.R., et al., 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789-804 [51] Landis, M.J., Freyman, W.A., Baldwin, B.G., 2018. Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. Evolution 72, 2343-2359 [52] Latti, A.K., Riihinen, K.R., Kainulainen, P.S., 2008. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agr. Food Chem. 56, 190-196 [53] Li, B., Cantino, P.D., Olmstead, R.G., et al., 2016. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification. Sci. Rep. 6, 1-18 [54] Lu, L., Fritsch, P.W., Matzke, N.J., et al., 2019. Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit-colour evolution, biogeography and diversification. Global Ecol. Biogeogr. 28, 891-903 [55] MacKinnon, J.R., MacKinnon, J., Phillipps, K., et al., 2000. A field guide to the birds of China. Oxford University Press [56] Mahler, D.L., Revell, L.J., Glor, R.E., et al., 2010. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64, 2731-2745 [57] Martinez-Millan, M., 2010. Fossil record and age of the Asteridae. Bot. Rev. 76, 83-135 [58] McGuire, J.A., Witt, C.C., Remsen, J.V., et al. 2014. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 1038-1038 [59] Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. The CIPRES science gateway:a community resource for phylogenetic analyses. Proceedings of the 2011 TeraGrid Conference:extreme digital discovery 2011, 1-8 [60] Moen, D., Morlon, H., 2014. Why does diversification slow down? Trends Ecol. Evol. 29, 190-197 [61] Moore, B.R., Hohna, S., May, M.R., et al., 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl. Acad. Sci. U.S.A. 113, 9569-9574 [62] Nakagawa, S., 2004. A farewell to Bonferroni:the problems of low statistical power and publication bias. Behav. Ecol. 15, 1044-1045 [63] Nakanishi, H., 1996. Fruit color and fruit size of bird-disseminated plants in Japan. J. Veg. Sci. 123, 207-218 [64] Nishi, H., Tsuyuzaki, S., 2004. Seed dispersal and seedling establishment of Rhus trichocarpa promoted by a crow (Corvus macrorhynchos) on a volcano in Japan. Ecography 27, 311-322 [65] Nylander, J.A., Olsson, U., Alstrom, P., et al., 2008. Accounting for phylogenetic uncertainty in biogeography:a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves:Turdus). Syst. Biol. 57, 257-268 [66] Paradis, E., Claude, J., Strimmer, K., 2004. APE:Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289-290 [67] Pyron, R.A., Wiens, J.J., 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. P. Roy. Soc. B-Biol. Sci. 280, 20131622 [68] Qian, C.J., Shi, Y., Liu, Y., et al., 2018. Phylogenetics and dispersal patterns of Brassicaceae around the Qinghai-Tibet Plateau. J. Syst. Evol. 56, 202-217 [69] Rabosky, D.L., Donnellan, S.C., Grundler, M., et al., 2014a. Analysis and visualization of complex macroevolutionary dynamics:an example from Australian scincid lizards. Syst. Biol. 63, 610-627 [70] Rabosky, D.L., Grundler, M., Anderson, C., et al. 2014b. BAMMtools:an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701-707 [71] Rambaut, A., Drummond, A.J., Xie, D., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901 [72] Reguera, S., Zamora-Camacho, F.J., Moreno-Rueda, G., 2014. The lizard Psammodromus algirus (Squamata:Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112, 132-141 [73] Revell, L.J., 2012. Phytools:an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223 [74] Rolland, J., Condamine, F.L., Jiguet, F., et al., 2014. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biology 12, e1001775 [75] Schaefer, H.M., McGraw, K., Catoni, C., 2008. Birds use fruit colour as honest signal of dietary antioxidant rewards. Funct. Ecol. 22, 303-310 [76] Schaefer, H.M., Valido, A., Jordano, P., 2014. Birds see the true colours of fruits to live off the fat of the land. P. Roy. Soc. B-Biol. Sci. 281, 20132516 [77] Shanahan, M., So, S., Compton, S.G., et al., 2001. Fig-eating by vertebrate frugivores:a global review. Biol. Rev. 76, 529-572 [78] Shaw, J., Lickey, E.B., Beck, J.T., et al., 2005. The tortoise and the hare II:relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92, 142-166 [79] Shaw, J., Lickey, E.B., Schilling, E.E., et al., 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms:the tortoise and the hare III. Am. J. Bot. 94, 275-288 [80] Sinnott-Armstrong, M.A., Downie, A.E., Federman, S., et al., 2018. Global geographic patterns in the colours and sizes of animal-dispersed fruits. Global Ecol. Biogeogr. 27, 1339-1351 [81] Sinnott-Armstrong, M.A., Lee, C., Clement, W.L., et al., 2020. Fruit syndromes in Viburnum:correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol. Biol. 20, 1-19 [82] Sinnott-Armstrong, M.A., Donoghue, M.J., Jetz, W.J., 2021. Dispersers and environment drive global variation in fruit colour syndromes. Ecol. Lett. 24, 1387-1399 [83] Smith, J.F., 2001. High species diversity in fleshy-fruited tropical understory plants. Am. Nat. 157, 646-653 [84] Smith, S.B., DeSando, S.A., Pagano, T., 2013. The value of native and invasive fruit-bearing shrubs for migrating songbirds. Northeast. Nat. 20, 171-184 [85] Sotomayor, D.A., 2014. Biotic evolution and environmental change in Southeast Asia. Can. Geogr-Geogr. Can. 58, E58-E58 [86] Spriggs, E.L., Clement, W.L., Sweeney, P.W., et al., 2015. Temperate radiations and dying embers of a tropical past:the diversification of Viburnum. New Phytol. 207, 340-354 [87] Steyn, W.J., Wand, S.J.E., Holcroft, D.M., et al., 2002. Anthocyanins in vegetative tissues:a proposed unified function in photoprotection. New Phytol. 155, 349-361 [88] Steyn, W.J., Wand, S.J.E., Jacobs, G., et al., 2009. Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel. Physiol. Plantarum 136, 461-472 [89] Sullivan, D., 2009. Google Earth Pro. Econtent 32, 16-18 [90] Tiffney, B.H., Mazer, S.J., 1995. Angiosperm growth habit, dispersal and diversification reconsidered. Evol. Ecol. 9, 93-117 [91] Tu, Y.H., Sun, L.N., Guo, M.L., et al., 2013. The medicinal uses of Callicarpa L. in traditional Chinese medicine:An ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol. 146, 465-481 [92] Valenta, K., Nevo, O., 2020. The dispersal syndrome hypothesis:how animals shaped fruit traits, and how they did not. Funct. Ecol. 34, 1158-1169 [93] Van Dam, M.H., Matzke, N.J., 2016. Evaluating the influence of connectivity and distance on biogeographical patterns in the south-western deserts of North America. J. Biogeogr. 43, 1514-1532 [94] Van Iterson, M., Boer, J.M., Menezes, R.X., 2010. Filtering, FDR and power. BMC bioinformatics 11, 1-11 [95] Vittoz, P., Dussex, N., Wassef, J., et al., 2009. Diaspore traits discriminate good from weak colonisers on high-elevation summits. Basic Appl. Ecol. 10, 508-515 [96] Wheelwright, N.T., 1988. Fruit-eating birds and bird-dispersed plants in the tropics and temperate zone. Trends Ecol. Evol. 3, 270-274 [97] Willson, M.F., Irvine, A.K., Walsh, N.G., 1989. Vertebrate dispersal syndromes in some Australian and New Zealand plant-communities, with geographic comparisons. Biotropica 21, 133-147 [98] Willson, M.F., Graff, D.A., Whelan, C.J., 1990a. Color preferences of frugivorous birds in relation to the colors of fleshy fruits. Condor 92, 545-555 [99] Willson, M.F., Rice, B.L., Westoby, M., 1990b. Seed dispersal spectra:a comparison of temperate plant communities. J. Veg. Sci. 1, 547-562 [100] Willson, M.F., Sabag, C., Figueroa, J., et al., 1996. Seed dispersal by lizards in Chilean rainforest. Rev. Chil. Hist. Nat. 69, 339-342 [101] Wolfe J.A., 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere:Data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the earth's rotational axis. Am. Sci. 66, 694-703 [102] Wolfe J.A., Schorn H.E., Forest C.E., et al., 1997. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science 276, 1672-1675 [103] Xing, Y.W., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451 [104] Ye, X.Y., Ma, P.F., Yang, G.Q., et al., 2019. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. J. Biogeogr. 46, 2678-2689 [105] Yoder, J.B., Clancey E., Des Roches, S., et al., 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581-1596 [106] Young, L.M., Kelly, D., Nelson, X.J., 2012. Alpine flora may depend on declining frugivorous parrot for seed dispersal. Biol. Conserv. 147, 133-142 [107] Yu, Y., Harris, A.J., Blair, C., et al., 2015. RASP (Reconstruct Ancestral State in Phylogenies):a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46-49 [108] Zhang, Y.B., Li, X., Zhang, F., et al., 2012. A preliminary study of copy number variation in Tibetans. PLoS One 7, e41768 [109] Zoratti, L., Karppinen, K., Escobar, A.L., et al., 2014. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 5, 534 |
[1] | Ibrokhimjon Ergashov, Ziyoviddin Yusupov, Alireza Dolatyari, Mina Khorasani, İsmail Eker, Nazgul Turdumatova, Georgy Lazkov, Farruhbek Rasulov, Hang Sun, Tao Deng, Komiljon Tojibaev. New insights into the molecular phylogeny and biogeographical history of Allium subgenus Melanocrommyum (Amaryllidaceae) based on plastome and nuclear sequences [J]. Plant Diversity, 2025, 47(04): 561-575. |
[2] | Lang Li (李朗), Bing Liu (刘冰), Yu Song (宋钰), Hong-Hu Meng (孟宏虎), Xiu-Qin Ci (慈秀芹), John G. Conran, Rogier P.J. de Kok, Pedro Luís Rodrigues de Moraes, Jun-Wei Ye (叶俊伟), Yun-Hong Tan (谭运洪), Zhi-Fang Liu (刘志芳), Marlien van der Merwe, Henk van der Werff, Yong Yang (杨永), Jens G. Rohwer, Jie Li (李捷). Global advances in phylogeny, taxonomy and biogeography of Lauraceae [J]. Plant Diversity, 2025, 47(03): 341-364. |
[3] | Kai Chen, Yan-Chun Liu, Yue Huang, Xu-Kun Wu, Hai-Ying Ma, Hua Peng, De-Zhu Li, Peng-Fei Ma. Reassessing the phylogenetic relationships of Pseudosorghum and Saccharinae (Poaceae) using plastome and nuclear ribosomal sequences [J]. Plant Diversity, 2025, 47(03): 382-393. |
[4] | Xiaoyan Hu, Jinyu Zhang, Bo Wang. Seed size distributions of fleshy-fruited species are more right-skewed compared to that of dry-fruited species [J]. Plant Diversity, 2025, 47(03): 522-525. |
[5] | Min-Fei Jin, Xiang-Hai Cai, Gao Chen. Seed dispersal by deception: A game between mimetic seeds and their bird dispersers [J]. Plant Diversity, 2025, 47(02): 169-177. |
[6] | Xue Wang, Xinrui Liu, Shuang Chen, Jiang Zhu, Yanqi Yuan, Rong Zhu, Kaixi Chen, Xue Yang, Xiaochun Wang, Weiyi Mo, Ruili Wang, Shuoxin Zhang. Elevational variation in anatomical traits of the first-order roots and their adaptation mechanisms [J]. Plant Diversity, 2025, 47(02): 291-299. |
[7] | Zengke Zhang, Wensheng Chen, Zengyan Li, Wentao Ren, Ling Mou, Junyong Zheng, Tian Zhang, Hantang Qin, Liyi Zhou, Bile Sai, Hang Ci, Yongchuan Yang, Shekhar R. Biswas, Enrong Yan. The island rule-like patterns of plant size variation in a young land-bridge archipelago: Roles of environmental circumstance and biotic competition [J]. Plant Diversity, 2025, 47(02): 300-310. |
[8] | Wei Gu, Ting Zhang, Shui-Yin Liu, Qin Tian, Chen-Xuan Yang, Qing Lu, Xiao-Gang Fu, Heather R. Kates, Gregory W. Stull, Pamela S. Soltis, Douglas E. Soltis, Ryan A. Folk, Robert P. Guralnick, De-Zhu Li, Ting-Shuang Yi. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae [J]. Plant Diversity, 2024, 46(06): 683-697. |
[9] | Liang Zhang, Zhen-Long Liang, Xue-Ping Fan, Ngan Thi Lu, Xin-Mao Zhou, Hong-Jin Wei, Li-Bing Zhang. The Indo-Burma biodiversity hotspot for ferns: Updated phylogeny, hidden diversity, and biogeography of the java fern genus Leptochilus (Polypodiaceae) [J]. Plant Diversity, 2024, 46(06): 698-712. |
[10] | Yanwei Guan, Yongru Wu, Zheng Cao, Zhifeng Wu, Fangyuan Yu, Haibin Yu, Tiejun Wang. Island biogeography theory and the habitat heterogeneity jointly explain global patterns of Rhododendron diversity [J]. Plant Diversity, 2024, 46(05): 565-574. |
[11] | Tao Zhou, Xiaodan Chen, Jordi López-Pujol, Guoqing Bai, Sonia Herrando-Moraira, Neus Nualart, Xiao Zhang, Yuemei Zhao, Guifang Zhao. Genetically-and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus Dipteronia [J]. Plant Diversity, 2024, 46(05): 585-599. |
[12] | Yajun Wang, Hanchen Wang, Chao Ye, Zhiping Wang, Chongbo Ma, Dongliang Lin, Xiaohua Jin. Progress in systematics and biogeography of Orchidaceae [J]. Plant Diversity, 2024, 46(04): 425-434. |
[13] | Jun-Yi Zhang, Yue-Hong Cheng, Min Liao, Yu Feng, Sen-Long Jin, Ting-Mei He, Hai He, Bo Xu. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data [J]. Plant Diversity, 2024, 46(04): 435-447. |
[14] | Hui Feng, Achyut Kumar Banerjee, Wuxia Guo, Yang Yuan, Fuyuan Duan, Wei Lun Ng, Xuming Zhao, Yuting Liu, Chunmei Li, Ying Liu, Linfeng Li, Yelin Huang. Origin and evolution of a new tetraploid mangrove species in an intertidal zone [J]. Plant Diversity, 2024, 46(04): 476-490. |
[15] | Yanjun Du, Rongchen Zhang, Xinran Tang, Xinyang Wang, Lingfeng Mao, Guoke Chen, Jiangshan Lai, Keping Ma. The mid-domain effect in flowering phenology [J]. Plant Diversity, 2024, 46(04): 502-509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||