研究论文

小桐子EST-SSR分子标记的开发与种质遗传多样性分析

  • 杨春1、2 ,
  • 刘爱忠1
展开
  • 1 中国科学院西双版纳热带植物园,云南 勐腊666303; 2 中国科学院研究生院,北京100049

收稿日期: 2011-04-18

  网络出版日期: 2011-05-19

基金资助

国家自然科学基金项目(30871548)

Development of EST-SSR Markers from Jatropha curcas (Euphorbiaceae) and Their Application in Genetic Diversity Analysis among Germplasms

  • YANG Chun-1、2 ,
  • LIU Ai-Zhong-1
Expand
  • 1 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
    2  Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2011-04-18

  Online published: 2011-05-19

Supported by

国家自然科学基金项目(30871548)

摘要

小桐子(Jatropha curcas) 适应性强,不择土壤,种子油脂性能适宜生物柴油的生产,是重要的生物柴油植物。基于小桐子种子发育过程中的EST序列,采用生物信息学方法,从4640个EST非冗余序列上鉴别了1009个SSR位点并分析其分布特征;开发了11对多态的EST-SSR分子标记,并利用这些分子标记调查了24个不同地理种源的遗传多样性,从每个位点的等位基因数目(2~3,平均为2.45)、期望杂合度(He为0.0887~0.5128,平均是0.2736)、多态信息含量(PIC为0.0847~0.4031,平均是0.2313)等方面反映了小桐子种质的遗传多样性低。进一步分析显示不同地理种源的遗传关系缺乏明显的地理结构。作者开发的EST-SSR分子标记不仅有助于小桐子种质的遗传多样性研究,也有助于小桐子种质间的遗传关系鉴别。

本文引用格式

杨春1、2 , 刘爱忠1 . 小桐子EST-SSR分子标记的开发与种质遗传多样性分析[J]. Plant Diversity, 2011 , 33(5) : 529 -534 . DOI: 10.3724/SP.J.1143.2011.11064

Abstract

Jatropha curcas (Euphorbiaceae) has created tremendous interest all over the world for the use of its seed oil as a commercial source of biodiesel. Based on 9843 ESTs available from the developing seeds of Jatropha curcas, we identified 1009 SSRs in 4640 unigenes and developed 11 polymorphic EST-SSR markers which exhibited a low level of genetic diversity among germplasms, i.e. allele number varied from 2 to 3, with a average of 2.45; Heterozygosity (He) ranged from 0.0887-0.5128, with a average of 0.2736; Polymorphic Information Content (PIC) ranged from 0.0847-0.4031, with a average of 0.2313. Further, we analyzed the genetic relationships among 24 germplasms collected from different areas in southern China, northern Vietnam, and India using the 11 EST-SSR markers. The results showed that there was no a geographic pattern of genotypes across the collection areas of Jatropha curcas. The EST-SSR markers developed in current study is useful for both genetic diversity analysis and identification of genetic relationships among germplasms in Jatropha curcas.

参考文献

丘华兴, 1996. 中国植物志,第44卷第2分册[M]. 北京: 科学出版社, 148
陈冀胜, 郑硕, 1987. 中国有毒植物[M]. 北京: 科学出版社, 258
Basha SD, Sujatha EM, 2007. Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population specific SCAR markers[J]. Euphoria, 156: 375—386
Cai Y, Sun DK, Wu GJ et al., 2010. ISSR-based genetic diversity of Jatropha curcas germplasm in China[J]. Biomass & Bioenergy,  34: 1739—1750
Cardle L, Ramsay L, Milbourne D et al., 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics, 156: 847—854
Carvalho CR, Clarindo WR, Prac MM et al., 2008. Genome size, base composition and karyotype of Jatropha curcas L.: an important biofuel plant[J]. Plant Science, 174: 613—617
Doyle J, Doyle J, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemistry, 19: 11—15
Ellis JR, Burke JM, 2007. EST-SSRs as a resource for population genetics analysis[J]. Heredity, 99: 125—132
Fairless D, 2007. Biofuel: The little shrub that could-maybe[J]. Nature, 449: 652—655
Foidl N, Foidl G, Sanchez M et al., 1996. Jatropha curcas L. as a source for the production of biofuel in Nicaragua[J]. Bioresource Technology,  58: 77—82
Gübitz GM, Mittelbach M, Trabi M, 1999. Exploitation of the tropical oil seed plant Jatropha curcas L[J]. Bioresource Technology, 67: 73—82
Li WZ, Godzik A, 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 22: 1658—1659
Morgante M, Hanafey M, Powell W, 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature Genetics,  30: 194—200
Nicot N, Chiquet V, Gandon B et al., 2004. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs)[J]. Theoretical and Applied Genetics,  109: 800—805
Qiu L, Yang C, Tian B et al., 2010. Exploiting EST databases for the development and characterization of EST-SSR marker in castor (Ricinus communis L.)[J]. BMC Plant Biology,  10: 278
Ranade SA, Srivastava AP, Rana TS et al., 2008. Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods[J]. Biomass & Bioenergy, 32: 533—540
Sun QB, Li LF, Li Y et al., 2008. SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China[J]. Crop Science, 48: 1865—1871
Tatikonda L, Wani SP, Kannan S et al., 2009. AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant[J]. Plant Science, 176: 505—513
Tóth G, Gáspári Z, Jurka J, 2000. Microsatellites in different eukaryotic genomes: Survey and analysis[J]. Genome Research,  10: 967—981
Varshney RK, Thiel T, Stein N et al., 2002. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species[J]. Cellular & Molecular Biology Letters,  7: 537—546
Wen M, Wang H, Xia Z et al., 2010. Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L.[J]. BMC Research Notes, 3:42
Yadav HK, Ranjan A, Asif M et al., 2010. EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera[J]. Tree Genetics & Genomes,  7: 207—219

文章导航

/