Plant Diversity ›› 2020, Vol. 42 ›› Issue (05): 356-361.DOI: 10.1016/j.pld.2020.06.009
Xin-Yu Dua,b, Jin-Mei Lua, De-Zhu Lia,b
收稿日期:
2020-01-07
修回日期:
2020-06-09
出版日期:
2020-10-25
发布日期:
2020-10-28
通讯作者:
Xin-Yu Du, Jin-Mei Lu, De-Zhu Li
基金资助:
Xin-Yu Dua,b, Jin-Mei Lua, De-Zhu Lia,b
Received:
2020-01-07
Revised:
2020-06-09
Online:
2020-10-25
Published:
2020-10-28
Contact:
Xin-Yu Du, Jin-Mei Lu, De-Zhu Li
Supported by:
摘要: Cytidine-to-uridine (C-to-U) RNA editing is common in coding regions of organellar genomes throughout land plants. In most cases RNA editing alters translated amino acids or creates new start codons, potentially confounds phylogenetic reconstructions. In this study, we used the spike moss genus Selaginella (lycophytes), which has the highest frequency of RNA editing, as a model to test the effects of extreme RNA editing on phylogenetic reconstruction. We predicted the C-to-U RNA editing sites in coding regions of 18 Selaginella plastomes, and reconstructed the phylogenetic relationships within Selaginella based on three data set pairs consisted of plastome or RNA-edited coding sequences, first and second codon positions, and translated amino acid sequences, respectively. We predicted between 400 and 3100 RNA editing sites of 18 Selaginella plastomes. The numbers of RNA editing sites in plastomes were highly correlated with the GC content of first and second codon positions, but not correlated with the GC content of plastomes as a whole. Contrast phylogenetic analyses showed that there were substantial differences (e.g., the placement of clade B in Selaginella) between the phylogenies generated by the plastome and RNA-edited data sets. This empirical study provides evidence that extreme C-to-U RNA editing in the coding regions of organellar genomes alters the sequences used for phylogenetic reconstruction, and might even confound phylogenetic reconstruction. Therefore, RNA editing sites should be corrected when plastid or mitochondrial genes are used for phylogenetic studies, particularly in those lineages with abundant organellar RNA editing sites, such as hornworts, quillworts, spike mosses, and some seed plants.
Xin-Yu Du, Jin-Mei Lu, De-Zhu Li. Extreme plastid RNA editing may confound phylogenetic reconstruction: A case study of Selaginella (lycophytes)[J]. Plant Diversity, 2020, 42(05): 356-361.
Xin-Yu Du, Jin-Mei Lu, De-Zhu Li. Extreme plastid RNA editing may confound phylogenetic reconstruction: A case study of Selaginella (lycophytes)[J]. Plant Diversity, 2020, 42(05): 356-361.
Bowe, L.M., dePamphilis, C.W., 1996. Effects of RNA editing and gene processing on phylogenetic reconstruction. Mol. Biol. Evol. 13, 1159-1166. Chateigner-Boutin, A.L., Small, I., 2011. Organellar RNA editing. Wiley Interdisciplinary Reviews-RNA 2, 493-506. Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125, 1-15. Gerke, P., Szovenyi, P., Neubauer, A., et al., 2020. Towards a plant model for enigmatic U-to-C RNA editing: the organelle genomes, transcriptomes, editomes and candidate RNA editing factors in the hornwort Anthoceros agrestis. New Phytol. 225, 1974-1992. Gitzendanner, M.A., Soltis, P.S., Yi, T.S., et al., 2018. Plastome phylogenetics: 30 years of inferences into plant evolution. Adv. Bot. Res. 85, 293-313. Gott, J.M., Emeson, R.B., 2000. Functions and mechanisms of RNA editing. Annu. Rev.Genet. 34, 499-531. Guo, W., Grewe, F., Fan, W., et al., 2016. Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol. Biol. Evol. 33, 1448-1460. Guo, W., Grewe, F., Mower, J.P., 2015. Variable frequency of plastid RNA editing among ferns and repeated loss of Uridine-to-Cytidine editing from vascular plants. PloS One 10, e0117075. Guo, W., Zhu, A., Fan, W., et al., 2017. Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns. New Phytol. 213, 391-403. Hasebe, M., Wolf, P.G., Pryer, K.M., et al., 1995. Fern phylogeny based on rbcL nucleotide sequences. Am. Fern J. 85, 134-181. Hecht, J., Grewe, F., Knoop, V., 2011. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol. Evol. 3, 344-358. Ichinose, M., Sugita, M., 2017. RNA editing and its molecular mechanism in plant organelles. Genes 8, 5. Jansen, R.K., Cai, Z., Raubeson, L.A., et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. U.S.A. 104, 19369-19374. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. Knie, N., Grewe, F., Fischer, S., et al., 2016. Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns e a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evol. Biol. 16, 134. Knoop, V., 2011. When you can't trust the DNA: RNA editing changes transcript sequences. Cell. Mol. Life Sci. 68, 567-586. Lenz, H., Hein, A., Knoop, V., 2018. Plant organelle RNA editing and its specificity factors: enhancements of analyses and new database features in PREPACT 3.0.BMC Bioinf. 19, 255. Maier, R.M., Zeltz, P., Kössel, H., et al., 1996. RNA editing in plant mitochondria and chloroplasts. Plant Mol. Biol. 32, 343-365. Malek, O., Lättig, K., Hiesel, R., et al., 1996. RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J. 15, 1403-1411. Mower, J.P., Ma, P.F., Grewe, F., et al., 2019. Lycophyte plastid genomics: extreme variation in GC, gene and intron content and multiple inversions between a direct and inverted orientation of the rRNA repeat. New Phytol. 222, 1061-1075. Nie, Y., Foster, C.S.P., Zhu, T., et al., 2020. Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies Syst. Biol. 69, 1-16. Oldenkott, B., Yamaguchi, K., Tsuji-Tsukinoki, S., et al., 2014. Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyte Selaginella uncinata. RNA 20, 1499-1506. Petersen, G., Seberg, O., Davis, J.I., et al., 2006. RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes. Taxon 55, 871-886. Petersen, G., Seberg, O., Davis, J.I., 2013. Phylogeny of the Liliales (Monocotyledons)with special emphasis on data partition congruence and RNA editing. Cladistics 29, 274-295. Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253-1256. PPG, 2016. A community-derived classification for extant lycophytes and ferns.J. Systemat. Evol. 54, 563-603. Ruhfel, B.R., Gitzendanner, M.A., Soltis, P.S., et al., 2014. From algae to angiospermseinferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23. Small, I.D., Schallenberg-Rudinger, M., Takenaka, M., et al., 2020. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 101, 1040-1056. Smith, D.R., 2009. Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol. Biol. 71, 627-639. Smith, D.R., 2020. Unparalleled variation in RNA editing among Selaginella plastomes. Plant Physiol. 182, 12-14. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30, 1312-1313. Szmidt, A.E., Lu, M.Z., Wang, X.R., 2001. Effects of RNA editing on the coxI evolution and phylogeny reconstruction. Euphytica 118, 9-18. Takenaka, M., Zehrmann, A., Verbitskiy, D., et al., 2013. RNA editing in plants and its evolution. Annu. Rev. Genet. 47, 335-352. Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. Tsuji, S., Ueda, K., Nishiyama, T., et al., 2007. The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. J. Plant Res. 120, 281-290. Varigerow, S., Teerkorn, T., Knoop, V., 1999. Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biol. 1, 235-243. Weststrand, S., Korall, P., 2016. A subgeneric classification of Selaginella (Selaginellaceae). Am. J. Bot. 103, 2160-2169. Wolf, P.G., Rowe, C.A., Hasebe, M., 2004. High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339, 89-97. Zhang, H.R., Wei, R., Xiang, Q.P., et al., 2020. Plastome-based phylogenomics resolves the placement of the sanguinolenta group in the spikemoss of lycophyte(Selaginellaceae). Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2020.106788. Zhang, H.R., Xiang, Q.P., Zhang, X.C., 2019. The unique evolutionary trajectory and dynamic conformations of DR and IR/DR-coexisting plastomes of the early vascular plant Selaginellaceae (Lycophyte). Genome Biol. Evol. 11, 1258-1274. Zhou, X.M., Gao, X.F., Zhang, L.B., 2016. A large-scale phylogeny of the lycophyte genus Selaginella based on plastid and nuclear loci. Cladistics 32, 360-389. |
[1] | Na-Na Zhang (张娜娜), Gregory W. Stull, Xue-Jie Zhang (张学杰), Shou-Jin Fan (樊守金), Ting-Shuang Yi (伊廷双), Xiao-Jian Qu (曲小健). PlastidHub: An integrated analysis platform for plastid phylogenomics and comparative genomics[J]. Plant Diversity, 2025, 47(04): 544-560. |
[2] | Zhi-Qiong Mo (莫智琼), Chao-Nan Fu (付超男), Alex D. Twyford, Pete M. Hollingsworth, Ting Zhang (张挺), Jun-Bo Yang (杨俊波), De-Zhu Li (李德铢), Lian-Ming Gao (高连明). Evaluating the utility of deep genome skimming for phylogenomic analyses: A case study in the species-rich genus Rhododendron[J]. Plant Diversity, 2025, 47(04): 593-603. |
[3] | Lang Li (李朗), Bing Liu (刘冰), Yu Song (宋钰), Hong-Hu Meng (孟宏虎), Xiu-Qin Ci (慈秀芹), John G. Conran, Rogier P.J. de Kok, Pedro Luís Rodrigues de Moraes, Jun-Wei Ye (叶俊伟), Yun-Hong Tan (谭运洪), Zhi-Fang Liu (刘志芳), Marlien van der Merwe, Henk van der Werff, Yong Yang (杨永), Jens G. Rohwer, Jie Li (李捷). Global advances in phylogeny, taxonomy and biogeography of Lauraceae[J]. Plant Diversity, 2025, 47(03): 341-364. |
[4] | Kai Chen, Yan-Chun Liu, Yue Huang, Xu-Kun Wu, Hai-Ying Ma, Hua Peng, De-Zhu Li, Peng-Fei Ma. Reassessing the phylogenetic relationships of Pseudosorghum and Saccharinae (Poaceae) using plastome and nuclear ribosomal sequences[J]. Plant Diversity, 2025, 47(03): 382-393. |
[5] | Kai-Yun Chen, Jin-Dan Wang, Rui-Qi Xiang, Xue-Dan Yang, Quan-Zheng Yun, Yuan Huang, Hang Sun, Jia-Hui Chen. Backbone phylogeny of Salix based on genome skimming data[J]. Plant Diversity, 2025, 47(02): 178-188. |
[6] | Amos Kipkoech, Ke Li, Richard I. Milne, Oyetola Olusegun Oyebanji, Moses C. Wambulwa, Xiao-Gang Fu, Dennis A. Wakhungu, Zeng-Yuan Wu, Jie Liu. An integrative approach clarifies species delimitation and biogeographic history of Debregeasia (Urticaceae)[J]. Plant Diversity, 2025, 47(02): 229-243. |
[7] | Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu. A revised classification of Dryopteridaceae based on plastome phylogenomics and morphological evidence, with the description of a new genus, Pseudarachniodes[J]. Plant Diversity, 2025, 47(01): 34-52. |
[8] | Liansheng Xu, Zhuqiu Song, Tian Li, Zichao Jin, Buyun Zhang, Siyi Du, Shuyuan Liao, Xingjie Zhong, Yousheng Chen. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq)[J]. Plant Diversity, 2025, 47(01): 21-33. |
[9] | Yongli Wang, Yan-Da Li, Shuo Wang, Erik Tihelka, Michael S. Engel, Chenyang Cai. Modeling compositional heterogeneity resolves deep phylogeny of flowering plants[J]. Plant Diversity, 2025, 47(01): 13-20. |
[10] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species[J]. Plant Diversity, 2025, 47(01): 53-67. |
[11] | Weidong Zhu, Jie Qian, Yingke Hou, Luke R. Tembrock, Liyun Nie, Yi-Feng Hsu, Yong Xiang, Yi Zou, Zhiqiang Wu. The evolutionarily diverged single-stranded DNA-binding proteins SSB1/SSB2 differentially affect the replication, recombination and mutation of organellar genomes in Arabidopsis thaliana[J]. Plant Diversity, 2025, 47(01): 127-135. |
[12] | Hong Qian, Jian Wang, Shenhua Qian, Michael Kessler. Geographic patterns and climatic drivers of the mean genus age of liverworts in North America[J]. Plant Diversity, 2024, 46(06): 723-731. |
[13] | Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae)[J]. Plant Diversity, 2024, 46(03): 344-352. |
[14] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes[J]. Plant Diversity, 2023, 45(02): 125-132. |
[15] | Juan Chen, Sijin Zeng, Linya Zeng, Khang Sinh Nguyen, Jiawei Yan, Hua Liu, Nianhe Xia. Parahellenia, a new genus segregated from Hellenia (Costaceae) based on phylogenetic and morphological evidence[J]. Plant Diversity, 2022, 44(04): 389-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||