Angiosperm Phylogeny Group (APG) IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20. Baker, W.J., Bailey, P., Barber, V., et al., 2022. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Syst. Biol. 71, 301-319. Bujaki, T., Rodrigue, N., 2022. Bayesian cross-validation comparison of amino acid replacement models: contrasting profile mixtures, pairwise exchangeabilities, and gamma-distributed rates-across-sites. J. Mol. Evol. 90, 468-475. Cai, C., 2024. Ant backbone phylogeny resolved by modelling compositional heterogeneity among sites in genomic data. Commun. Biol. 7, 106. Cai, C., Tihelka, E., Giacomelli, M., et al., 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771. Chaw, S.M., Liu, Y.C., Wu, Y.W., et al., 2019. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plants 5, 63-73. Chen, J.H., Hao, Z.D., Guang, X.M., et al., 2019. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nat. Plants 5, 18-25. Criscuolo, A., Gribaldo, S., 2010. BMGE (Block Mapping and Gathering with Entropy): selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210. Davis, C.C., Xi, Z., Mathews, S., 2014. Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there.. 12, 11. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C., 1978. A model of evolutionary change in proteins. In: Dayhoff, M.O., Ech, R.V. (Eds.), Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Maryland, pp. 345-352. de Sousa, F., Foster, P.G., Donoghue, P.C.J., et al., 2019. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta.). New Phytol. 222, 565-575. Donoghue, P.C.J., Harrison, C.J., Paps, J., et al., 2021. The evolutionary emergence of land plants. Curr. Biol. 31, R1281-R1298. Feuda, R., Dohrmann, M., Walker, P., et al., 2017. Improved modelling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. 27, 3864-3870. Fleming, J.F., Valero-Gracia, A., Struck, T.H., 2023. Identifying and addressing methodological incongruence in phylogenomics: a review. 16, 1087-1104. Foster, P.G., Schrempf, D., Szollősi, G.J., et al., 2022. Recoding amino acids to a reduced alphabet may increase or decrease phylogenetic accuracy. Syst. Biol. 72, 723-737. Giacomelli, M., Rossi, M.E., Lozano-Fernandez, J., et al., 2022. Resolving tricky nodes in the tree of life through amino acid recoding. iScience 25, 105594. Gitzendanner, M.A., Soltis, P.S., Wong, G.K.S., et al., 2018a. Plastid phylogenomic analysis of green plants: a billion years of evolutionary history. Am. J. Bot. 105, 291-301. Gitzendanner, M.A., Soltis, P.S., Yi, T.S., et al., 2018b. Plastome phylogenetics: 30 years of inferences into plant evolution. In: Shu, M.C., Robert, K.J. (Eds.), Advances in Botanical Research Vol. 85. Academic Press, Cambridge, pp. 293-313. Guo, X., Fangm D.M., Sahu, S.K., et al., 2021. Chloranthus genome provides insights into the early diversification of angiosperms. Nat. Commun. 12, 6930. Guo, C., Luo, Y., Gao, L.M., et al., 2023. Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65, 299-323. Harris, B.J., Harrison, C.J., Hetherington, A.M., et al., 2020. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Curr. Biol. 30, 2001-2012. Hernandez, A.M., Ryan, J.F., 2021. Six-state amino acid recoding is not an effective strategy to offset compositional heterogeneity and saturation in phylogenetic analyses. Syst. Biol. 70, 1200-1212. Hoang, D.T., Chernomor, O., von Haeseler, A., et al., 2018. UFBoot2: mproving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. Hou, Z., Ma, X.Y., Shi, X., et al., 2022. insights into a Mesoproterozoic-Neoproterozoic origin and early radiation of green seaweeds (). Nat. Commun. 13, 1610. Hu, H., Sun, P., Yang, Y., et al., 2023. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. J. Integr. Plant Biol. 65, 1479-1489. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., et al., 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. Kapli, P., Flouri, T., Telford, M.J., 2021. Systematic errors in phylogenetic trees. Curr. Biol. 31, R59-R64. Kapli, P., Yang, Z., Telford, M.J., 2020. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428-444. Kosiol, C., Goldman, N., Buttimore, N.H., 2004. A new criterion and method for amino acid classification. J. Theor. Biol. 228, 97-106. Lartillot, N., 2020. PhyloBayes: Bayesian phylogenetics using site-heterogeneous models. In: Scornavacca, C., Delsuc, F., Galtier, N. (Eds.), Phylogenetics in the Genomic Era. No ommercial ublisher, uthors pen ccess, pp. 1.5:1-1.5:16. Lartillot, N., 2023. Identifying the best approximating model in Bayesian phylogenetics:Bayes factors, cross-validation or wAIC? Syst. Biol. 72, 616-638. Lartillot, N., Rodrigue, N., Stubbs, D., et al., 2013. MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611-615. Laumer, C.E., Fernandez, R., Lemer, S., et al., 2019. Revisiting metazoan phylogeny with genomic sampling of all phyla. 286, 20190831. Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., et al., 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685. Li, H.T., Luo, Y., Gan, L., et al., 2021. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 19, 232. Li, H.T., Yi, T.S., Gao, L.M., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. Li, Z., De La Torre, A.R., Sterck, L., et al., 2017. Single-copy genes as molecular markers for phylogenomic studies in seed plants. 9, 1130-1147. Liu, Y., Cox, C.J., Wang, W., et al., 2014. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst. Biol. 63, 862-878. Liu, Y., Wang, S.B., Li, L.Z., et al., 2022. The Cycas genome and the early evolution of seed plants. Nat. Plants 8, 389-401. Lozano-Fernandez, J., 2022. A practical guide to design and assess a phylogenomic study. 14, evac129. Ma, J.X., Sun, P.C., Wang, D.D., et al., 2021. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat. Commun. 12, 6929. Marletaz, F., Peijnenburg, K.T.C.A., Goto, T., et al., 2019. A new phylogeny places the enigmatic arrow worms among. Curr. Biol. 29, 312-318. Moore, M.J., Bell, C.D., Soltis, P.S., et al., 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U. S. A. 104, 19363-19368. Puttick, M.N., Morris, J.L., Williams, T.A., et al., 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733-745. Qin, L.Y., Hu, Y.H., Wang, J.P., et al., 2021. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nat. Plants 7, 1239-1253. Ran, J.H., Shen, T.T., Wang, M.M., et al., 2018. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between and angiosperms. B 285, 20181012. Rannala B., Edwards S.V., Leache A., et al., 2020. The multi-species coalescent model and species tree inference. In: Scornavacca, C., Delsuc, F., Galtier, N. (Eds.), Phylogenetics in the Genomic Era. No ommercial ublisher, uthors pen ccess, pp. 3.3:1-3.3:21. Ranwez, V., Douzery, E.J., Cambon, C., et al., 2018. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35, 2582-2584. Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492-508. Soltis, P.S., Folk, R.A., Soltis, D.E., 2019. Darwin review: angiosperm phylogeny and evolutionary radiations. B 286, 20190099. Springer, M.S., Gatesy, J., 2014. Land plant origins and coalescence confusion.. 19, 267-269. Springer, M.S., Gatesy, J., 2016. The gene tree delusion. Mol. Phylogenet. Evol. 94, 1-33. Stull, G.W., Qu, X.J., Parins-Fukuchi, C., et al., 2021. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015-1025. Stull, G.W., Pham, K.K., Soltis, P.S., et al., 2023. Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant J. 114, 743-766. Su, D.Y., Yang, L.X., Shi, X., et al., 2021. Large-scale phylogenomic analyses reveal the monophyly of bryophytes and Neoproterozoic origin of land plants. Mol. Biol. Evol. 38, 3332-3344. Tihelka, E., Cai, C.Y., Giacomelli, M., et al., 2021. The evolution of insect biodiversity. Curr. Biol. 31, R1299-R1311. Wang, H.C. Minh, B.Q., Susko, E., et al., 2018. Modelling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216-235. Watanabe, S., 2009. Algebraic Geometry and Statistical Learning Theory (Cambridge Univ. Press). Wickett, N.J., Mirarab, S., Nguyen, N., et al., 2014. analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U. S. A. 111, E4859-E4868. Williams, T.A., Cox, C.J., Foster, P.G., et al., 2020. Phylogenomics provides robust support for a two-domains tree of life. 4, 138-147. Xue, J.Y., Dong, S.S., Wang, M.Q., et al., 2022. Mitochondrial genes from 18 angiosperms fill sampling gaps for phylogenomic inferences of the early diversification of flowering plants. 60, 773-788. Yang, L.X., Su, D.Y., Chang, X., et al., 2020a. Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling.. 1, 100027. Yang, Y.Z., Sun, P.C., Lv, L.K., et al., 2020b. Prickly and rigid hornwort genomes shed light on early angiosperm evolution. Nat. Plants 6, 215-222. Yang, T., Sahu, S.K., Yang, L.X., et al., 2022. Comparative analyses of 3654 plastid genomes unravel insights into evolutionary dynamics and phylogenetic discordance of green plants. Front. Plant Sci. 13, 808156. Yang, Z., 2014. Molecular Evolution: A Statistical Approach. Oxford Univ. Press, Oxford, England, xv+492 pp. Zeng, L.P., Zhang, Q., Sun, R.R., et al., 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5, 4956. Zhang, L., Chen, F., Zhang, X., et al., 2020. The water lily genome and the early evolution of flowering plants. Nature 577, 79-84. Zuntini, A.R., Carruthers, T., Maurin, O., et al., 2024. Phylogenomics and the rise of the angiosperms. Nature doi:10.1038/s41586-024-07324-0. |