Plant Diversity ›› 2020, Vol. 42 ›› Issue (02): 74-82.DOI: 10.1016/j.pld.2019.11.003
Juan Qiua, Jianwen Zhangb, Tiangang Gaoc, Dunyan Tana,d
收稿日期:
2019-06-15
修回日期:
2019-11-12
出版日期:
2020-04-25
发布日期:
2020-04-30
通讯作者:
Dunyan Tan
基金资助:
Juan Qiua, Jianwen Zhangb, Tiangang Gaoc, Dunyan Tana,d
Received:
2019-06-15
Revised:
2019-11-12
Online:
2020-04-25
Published:
2020-04-30
Supported by:
摘要: Crepis desertorum from the Junggar Basin of northern Xinjiang, northwestern China, is described as a new species. Molecular studies indicate that the species is closely related to Crepis frigida. Morphological studies indicate that it is similar to Crepis sancta subsp. bifida but differs from the latter taxon in having glandular hairs on the stem, a flat receptacle and dimorphic achenes. Chromosome features and pollen and achene ultrastructure also are described for the new species.
Juan Qiu, Jianwen Zhang, Tiangang Gao, Dunyan Tan. Crepis desertorum (Asteraceae, Cichorieae), a new species from northern Xinjiang (China) based on morphological and molecular data[J]. Plant Diversity, 2020, 42(02): 74-82.
Juan Qiu, Jianwen Zhang, Tiangang Gao, Dunyan Tan. Crepis desertorum (Asteraceae, Cichorieae), a new species from northern Xinjiang (China) based on morphological and molecular data[J]. Plant Diversity, 2020, 42(02): 74-82.
An, Z.X., 1999. Cichorieae. In: An, Z.X. (Ed.), Flora Xinjiangensis, vol. 5. Xinjiang Science & Technology & Hygiene Publishing House, Urumqi, pp. 367-472. Babcock, E.B., 1947a. The Genus Crepis I. The Taxonomy, Phylogeny, Distribution and Evolution of Crepis, 21. University of California Publications in Botany, pp. 1-198. Babcock, E.B., 1947b. The Genus Crepis II. Systematic Treatment, 22. University of California Publications in Botany, pp. 199-1030. Czerepanov, S.K., 1964. Lagoseris. In: Bobrov, E.G., Tzvelev, N.N. (Eds.), Flora of the USSR, 29. Academy of Sciences of the USSR, Moscow & Leningrad, pp. 699-715. Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9 (8), 772. https://doi:10.1038/nmeth.2109. Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19 (1), 11-15. Enke, N., 2010. Contributions towards a revised infrageneric classification of Crepis(Cichorieae, Compositae). Willdenowia 39 (2), 229-245. https://doi:10.3372/wi.39.3920. Enke, N., Gemeinholzer, B., 2008. Babcock revisited: new insights into generic delimitation and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. Taxon 57 (3), 756-768. https://www.jstor.org/stable/27756706. Fehrer, J., Gemeinholzer, B., Chrtek, J., Bräutigam, S., 2007. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol. Phylogenetics Evol. 42 (2), 347-361. https://doi:10.1016/j.ympev.2006.07.004. Hou, K.Z., 1982. A Dictionary of the Families and Genera of Chinese Seed Plants, second ed. Science Press, Beijing, p. 263. Johnson, L.A., Soltis, D.E., 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann. Mo. Bot. Gard. 82 (2), 149-175. http://www.jstor.org/stable/2399875. Kalmuk, N.A., Inceer, H., Imamoglu, K.V., 2018. Achene micromorphology of 26 Crepis L. (Asteraceae) taxa from Turkey with notes on its systematic and ecological significance. Bot. Lett. 165, 292-306. https://doi.org/10.1080/23818107.2018.1452167. Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30 (4), 3059-3066. https://doi:10.1093/nar/gkf436. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30 (4), 772-780. https://doi:10.1093/molbev/mst010. Kilian, N., Gemeinholzer, B., Lack, H.W., 2009. Cichorieae. In: Funk, V.A., Susana, A., Stuessy, T.F., Bayer, R.J. (Eds.), Systematics, Evolution and Biogeography of the Compositae. IAPT, Vienna, pp. 343-383. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870-1874. https://doi.org/10.1093/molbev/msw054. Lack, H.W., 2007. Tribe Cichorieae Lam. et DC. In: Kadereit, J.M., Jeffrey, C. (Eds.), The Families and Genera of Vascular Plants, vol. 8. Springer, Berlin & Heidelberg, pp. 180-199. Levan, A., Fredga, K., Sandberg, A.A., 1964. Nomenclature for the centromeric position on chromosomes. Hereditas 52 (2), 201-220. Li, M.X., Chen, R.Y., 1985. A suggestion on the standardization of karyotype analysis in plants. J. Wuhan Bot. Res. 3 (4), 297-302. Ma, Y.Z., Meng, H.W., Sang, Y.L., Sun, A.Z., Wu, J., Wang, W., 2009. Pollen keys for identification of coniferopsida and compositae classes under light microscopy and their ecological significance. Acta Palaeontol. Sin. 48 (2), 240-253. Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, pp. 1-8. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 (3), 539-542. https://doi:10.1093/sysbio/sys029. Shi, Z., Ge, X.J., Kilian, N., Kirschner, J., Štěpánek, J., Sukhorukov, A.P., Mavrodiev, E.V., Gottschlich, G., 2011. Cichorieae. In: Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China, vol. 20. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, pp. 195-353. Skvarla, J.J., Turner, B.L., 1966. Systematic implications from electron microscopic studies of Compositae pollen e a review. Ann. Mo. Bot. Gard. 53 (2), 220-256. https://doi:10.2307/2394944. Stebbins, G.L., 1971. Chromosomal Evolution in Higher Plants. Edward Arnold Ltd., London, pp. 87-90. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30 (9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033. Swofford, D.L., 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer, Sunderland, Massachusetts version 4.0b10. White, T.L., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Innis, M.A., Gelfand, D., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp. 315-322. Zhang, J.W., Nie, Z.L., Wen, J., Sun, H., 2011. Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China. Taxon 60 (1), 15-26. https://doi:10.1002/tax.601003. |
[1] | Xiao-Hua Lin (林晓华), Si-Yu Xie (解思宇), Dai-Kun Ma (马代锟), Shuai Liao (廖帅), Bin-Jie Ge (葛斌杰), Shi-Liang Zhou (周世良), Liang Zhao (赵亮), Chao Xu (徐超), De-Yuan Hong (洪德元), Bin-Bin Liu (刘彬彬). Phylogenomic insights into Adenophora and its allies (Campanulaceae): Revisiting generic delimitation and hybridization dynamics[J]. Plant Diversity, 2025, 47(04): 576-592. |
[2] | Lang Li (李朗), Bing Liu (刘冰), Yu Song (宋钰), Hong-Hu Meng (孟宏虎), Xiu-Qin Ci (慈秀芹), John G. Conran, Rogier P.J. de Kok, Pedro Luís Rodrigues de Moraes, Jun-Wei Ye (叶俊伟), Yun-Hong Tan (谭运洪), Zhi-Fang Liu (刘志芳), Marlien van der Merwe, Henk van der Werff, Yong Yang (杨永), Jens G. Rohwer, Jie Li (李捷). Global advances in phylogeny, taxonomy and biogeography of Lauraceae[J]. Plant Diversity, 2025, 47(03): 341-364. |
[3] | Tao Zhang, Qiang Fang. Consistent spatial-temporal variations of stigmatic pollen load among co-flowering species across six sub-alpine meadows[J]. Plant Diversity, 2025, 47(03): 489-498. |
[4] | Yuxuan Jiang, Fuli Wu, Xiaomin Fang, Haitao Wang, Yulong Xie, Cuirong Yu. Effective palynological diversity indices for reconstructing angiosperm diversity in China[J]. Plant Diversity, 2025, 47(02): 244-254. |
[5] | Ling-Yun Wu, Shuang-Quan Huang, Ze-Yu Tong. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats (Fagopyrum) in the Hengduan Mountains[J]. Plant Diversity, 2024, 46(05): 661-670. |
[6] | Yajun Wang, Hanchen Wang, Chao Ye, Zhiping Wang, Chongbo Ma, Dongliang Lin, Xiaohua Jin. Progress in systematics and biogeography of Orchidaceae[J]. Plant Diversity, 2024, 46(04): 425-434. |
[7] | Jun-Yi Zhang, Yue-Hong Cheng, Min Liao, Yu Feng, Sen-Long Jin, Ting-Mei He, Hai He, Bo Xu. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data[J]. Plant Diversity, 2024, 46(04): 435-447. |
[8] | Yue Zhao, Ya-Ping Chen, Bryan T. Drew, Fei Zhao, Maryam Almasi, Orzimat T. Turginov, Jin-Fei Xiao, Abdul G. Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang. Molecular phylogeny and taxonomy of Phlomoides (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data[J]. Plant Diversity, 2024, 46(04): 462-475. |
[9] | Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients?[J]. Plant Diversity, 2023, 45(04): 446-455. |
[10] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae)[J]. Plant Diversity, 2023, 45(01): 54-68. |
[11] | Bo Liu, Xiao-Yan Tao, Quan-Wen Dou. Molecular cytogenetic study on the plants of Elymus nutans with varying fertility on the Qinghai-Tibet Plateau[J]. Plant Diversity, 2022, 44(06): 617-624. |
[12] | Daniel Mutavi Katumo, Huan Liang, Anne Christine Ochola, Min Lv, Qing-Feng Wang, Chun-Feng Yang. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare[J]. Plant Diversity, 2022, 44(05): 429-435. |
[13] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species[J]. Plant Diversity, 2022, 44(05): 505-517. |
[14] | Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang. Recent advances on phylogenomics of gymnosperms and a new classification[J]. Plant Diversity, 2022, 44(04): 340-350. |
[15] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data[J]. Plant Diversity, 2022, 44(03): 300-307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||