BaileySerres, J., Voesenek, L.A., 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313-339.
Bouche, N., Fromm, H., 2004. GABA in plants: just a metabolite?. Trends. Plant Sci. 9, 110-115.
Chou, W.M., Kutchan, T.M., 1998. Enzymatic oxidations in the biosynthesis of complex alkaloids. Plant. J. 15, 289-300.
Facchini, P.J., 2006. Regulation of alkaloid biosynthesis in plants. Alkaloids Chem. Biol. 63, 1-44.
Fait, A., Fromm, H., Walter, D., et al., 2008. Highway or byway: the metabolic role of the GABA shunt in plants. Trends. Plant Sci. 13, 14-19.
Fan, L., Wu, X., Tian, Z., et al., 2015. Comparative proteomic analysis of gammaaminobutyric acid responses in hypoxiatreated and untreated melon roots. Phytochemistry.
Ford, YY., Ratcliffe, R.G., Robins, R.J., 1996. Phytohormoneinduced GABA production in transformed root cultures of Datura stramonium: an in vivo 15N NMR study. J. Exp. Bot. 47(299), 811-818.
Hashimoto, T., Hibi, N., Yamada, Y., 1993. Subtractive hybridization. Plant Tissue. Culture. Lett. 10, 307-313.
Hibi, N., Fujita, T., Hatano, M., et al.,1992. Putrescine Nmethyltransferase in cultured roots of Hyoscyamus albus. Plant Physiol. 100, 826-835.
Hu, X.Y., Kong, X.X., Wang, C.F., et al., 2014. Proteasomemediated degradation of FRIGIDA modulates flowering time in Arabidopsis during verna lization. Plant Cell. 26(12), 4763-4781.
Kessler, A., Baldwin, I.T., 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53, 299-328.
Kinnersley, A.M., Turano, F.J., 2000. γAminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 19, 479-509. DOI: 10.1016/S07352689(01)80006X.
Leete, E., 1980. Alkaloids derived from ornithine, lysine, and nicotinic acid. In Encyclopedia of Plant Physiology, New Series 8, Bell, E.A., Charlwood, B.V. (eds.) (Berlin: Springer Verlag), 65-91.
Li, J., Sun, J., Yang, Y., et al., 2012. Identification of hypoxicresponsive proteins in cucumber roots using a proteomic approach. Plant Physiol. Biochem. 51, 74-80.
Morard, P., Silvestre, J., Lacoste, L., et al., 2004. Nitrate uptake and nitrite release by tomato roots in response to anoxia. J. Plant Physiol. 161, 855-865.
Niroula, R.K., Pucciariello, C., Ho, V.T., et al., 2012. SUB1Adependent and independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J. 72, 282-293.
Oppenheim, R.W., Calderó, J., Cuitat, D., et al., 2003. Rescue of developing spinal motoneurons from programmed cell death by the GABAA agonist muscimol acts by blockade of neuromuscular activity and increased intramuscular nerve branching. Molecular and Cellular Neuroscience. 22, 331-343.
Paschold, A., Halitschke, R., Baldwin, I.T., 2007. Co(i)ordinating defenses: NaCOI1 mediates herbivore induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J. 51, 79-91.
Ramputh, A.I., Bown, A.W., 1996. Rapid [gamma]Aminobutyric Acid Synthesis and the Inhibition of the Growth and Development of ObliqueBanded LeafRoller Larvae. Plant Physiol. 111, 1349-1352.
Renault, H., Roussel, V., El Amrani, A., et al., 2010. The Arabidopsis pop21 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10, 20.
Roberts, M.R., 2007. Does GABA Act as a Signal in Plants?: Hints from Molecular Studies. Plant Signal. Behav. 2, 408-409.
Shoji, T., Ogawa, T., Hashimoto, T., 2008. Jasmonateinduced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol. 49, 1003-1012.
Shoji, T., Yamada, Y., Hashimoto, T., 2000. Jasmonate induction of putrescine Nmethyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol. 41, 831-839.
Smith, T.A., 1981. Amines. In The Biochemistry of Plants. Vol. 7, Stumpf P.K., Conn, E.E. (eds.) (London: Academic Press), 249-268.
Steppuhn, A., Gase, K., Krock, B., et al., 2004. Nicotine′s defensive function in nature. PLoS Biol. 2, E217.
Valderrama, R., Corpas, F.J., Carreras, A., et al., 2006. The dehydrogenasemediated recycling of NADPH is a key antioxidant system against saltinduced oxidative stress in olive plants. Plant Cell Environ. 29, 1449-1459.
Wang, C., Fan, L., Gao, H., et al., 2014. Polyamine biosynthesis and degradation are modulated by exogenous gammaaminobutyric acid in rootzone hypoxiastressed melon roots. Plant Physiol. Biochem. 82, 17-26.
Wang, S.S., Shi, Q.M., Li, W.Q., et al., 2008. Nicotine concentration in leaves of fluecured tobacco plants as affected by removal of the shoot apex and lateral buds. J. Integr. Plant Biol. 50, 958-964.
Wang, X., Bennetzen, J.L., 2015. Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes. Mol. Genet. Genomics. 290, 11-21.
Xi, X., Li, C., Zhang, F., 2008. Tobacco plants can use nitrogen taken up before mechanical wounding to synthesize nicotine afterwards. Plant Signal. Behav. 3, 87-90.
Xi, X.Y., Li, C.J., Zhang, F.S., 2005. Nitrogen supply after removing the shoot apex increases the nicotine concentration and nitrogen content of tobacco plants. Ann. Bot. 96, 793-797.
Yang, R., Guo, Q., Gu, Z., 2013. GABA shunt and polyamine degradation pathway on γaminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chemistry. 136(1), 152-159.
Zhu, P.J., Chiappinelli, V.A., 2002. Nicotinic receptors mediate increased GABA release in brain through a tetrodotoxininsensitive mechanism during prolonged exposure to nicotine. Neuroscience. 115, 137-144. |