Adler, P.B., and Levine, J.M. 2007. Contrasting relationships between precipitation and species richness in space and time. Oikos 116, 221-232. https://doi.org/10.1111/j.2006.0030-1299.15327.x. Berdugo, M., Kefi, S., Soliveres, S., et al. 2017. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 0003. https://doi.org/10.1038/s41559-016-0003. Berdugo, M., Maestre, F.T., Kefi, S., et al. 2019. Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. J. Ecol. 107, 190-202. https://doi.org/10.1111/1365-2745.13006. Blunch, N. 2008. Introduction to structural equation modeling using SPSS and AMOS. SAGE Publications Ltd. https://doi.org/10.4135/9781446249345. Borvka, L., Vacek, O., and Jehlika, J. 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128, 289-300, https://doi.org/10.1016/j.geoderma.2005.04.010. Chen, R., Ran, J., Huang, H., et al. 2019. Life history strategies drive size-dependent biomass allocation patterns of dryland ephemerals and shrubs. Ecosphere 10, e02709. https://doi.org/10.1002/ecs2.2709. Currie, D.J., Mittelbach, G.G., Cornell, H.V., et al. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121-1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x. Curtis, J.T., and McIntosh, R.P. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32, 476-496. https://doi.org/10.2307/1931725. De'ath, G., and Fabricius, K.E. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81, 3178-3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2. Delgado-Baquerizo, M., Maestre, F.T., Gallardo, A., et al. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672-676. https://doi.org/10.1038/nature12670. Deng, J., Wang, G., Morris, E., et al. 2006. Plant mass-density relationship along a moisture gradient in north-west China. J. Ecol. 94, 953-958. https://doi.org/10.1111/j.1365-2745.2006.01141.x. Deng, J., Li, T., Wang, G., et al. 2008. Trade-offs between the metabolic rate and population density of plants. PLoS One 3, e1799. https://doi.org/10.1371/journal.pone.0001799. Dong, L., Sun, Y., Ran, J., et al. 2022. Ecosystem organic carbon storage and their drivers across the drylands of China. Catena 214, 106280. https://doi.org/10.1016/j.catena.2022.106280. Dornelas, M., Chase, J.M., Gotelli, N.J., et al. 2023. Looking back on biodiversity change: lessons for the road ahead. Phil. Trans. R. Soc. B. 37820220199. http://doi.org/10.1098/rstb.2022.0199. Facelli, J.M., Chesson, P., and Barnes, N. 2005. Differences in seed biology of annual plants in arid lands: a key ingredient of the storage effect. Ecology 86, 2998-3006. https://doi.org/10.1890/05-0304. Fan, L., Tang, L., Wu, L., et al. 2014. The limited role of snow water in the growth and development of ephemeral plants in a cold desert. J. Veg. Sci. 25, 681-690. https://doi.org/10.1111/jvs.12121. Fang, J., Shen, Z., Tang, Z., et al. 2012. Forest community survey and the structural characteristics of forests in China. Ecography 35, 1059-1071. https://doi.org/10.1111/j.1600-0587.2013.00161.x. Fang, J., Yu, G., Liu, L., et al. 2018. Climate change, human impacts, and carbon sequestration in China. Proc. Natl Acad. Sci. USA. 115, 4015-4020. https://doi.org/10.1073/pnas.1700304115. Fick, S.E., and Hijmans, R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. https://doi.org/10.1002/joc.5086. Fong, Y., Huang, Y., Gilbert, P.B., et al. 2017. Chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 454. https://doi.org/10.1186/s12859-017-1863-x. Francis, A.P., and Currie, D.J. 2003. A globally consistent richness-climate relationship for angiosperms. The American Naturalist 161, 523-536. https://doi.org/10.1086/368223. Hageer, Y., Esperon-Rodriguez, M., Baumgartner, J.B., et al. 2017. Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species? PeerJ. 5, 1-22. https://doi.org/10.7717/peerj.3446. Harrison, S.P., Gornish, E.S., and Copeland, S. 2015. Climate-driven diversity loss in a grassland community. Proc. Natl Acad. Sci. USA 112, 8672-8677. https://doi.org/10.1073/pnas.1502074112. Hu, W., Ran, J., Dong, L., et al. 2021. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nat. Commun. 12, 1-15. https://doi.org/10.1038/s41467-021-25641-0. Hu, W., Hou, Q., Delgado-Baquerizo, M., et al. 2022. Continental-scale niche differentiation of dominant topsoil archaea in drylands. Environ. Microbiol. 24, 5483-5497. https://doi.org/10.1111/1462-2920.16099. Huang, J., Li, Y., Fu, C., et al. 2017. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719-778. https://doi.org/10.1002/2016RG000550. Husakova, I., Weiner, J., and Munzbergova, Z. 2018. Species traits and shoot-root biomass allocation in 20 dry-grassland species. J. Plant Ecol. 11, 273-285. https://doi.org/10.1093/jpe/rtw143. Hooper, D.U., Adair, E.C., Cardinale, B.J., et al. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105-108. https://doi.org/10.1038/nature11118. Jia, Y., Sun, Y., Zhang, T., et al. 2020. Elevated precipitation alters the community structure of spring ephemerals by changing dominant species density in Central Asia. Ecol. Evol. 10, 2196-2212. https://doi.org/10.1002/ece3.6057. Kuznetsova, A., Brockhoff, P.B., and Christensen, R.H.B. 2017. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1-26. https://doi.org/10.18637/jss.v082.i13. Ladwig, L.M., Ratajczak, Z.R., Ocheltree, T.W., et al. 2016. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems. Ecology 97, 372-382. https://doi.org/10.1890/15-0153.1. Le Bagousse-Pinguet, Y., Gross, N., Maestre, F.T., et al. 2017. Testing the environmental filtering concept in global drylands. J. Ecol. 105, 1058-1069. https://doi.org/10.1111/1365-2745.12735. Li, X., Song, G., Hui, R., et al. 2017. Precipitation and topsoil attributes determine the species diversity and distribution patterns of crustal communities in desert ecosystems. Plant Soil 420, 163-175. https://doi.org/10.1007/s11104-017-3385-8. Li, Y., Zhang, X., and Lv, G. 2019. Phylogeography of Ixiolirion songaricum, a spring ephemeral species endemic to Northwest China. Plant Syst. Evol. 305, 205-221. https://doi.org/10.1007/s00606-018-1563-7. Li, C., Fu, B., Wang, S., et al. 2021. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858-873. https://doi.org/10.1038/s43017-021-00226-z. Liu, Y., Su, X. Shrestha, N., et al. 2018. Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms. Ecography 42, 334-345. https://doi.org/10.1111/ecog.03698. Maestre, F.T., Quero, J.L., Gotelli, N.J., et al. 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214-218. https://doi.org/10.1126/science.1215442. Meng, H., Gao, X., Huang, J., et al. 2015. Plant phylogeography in arid Northwest China: Retrospectives and perspectives. J. Syst. Evol. 53, 33-46. https://doi.org/10.1111/jse.12088. Ochoa-Hueso, R., Eldridge, D.J., Delgado-Baquerizo, M., et al. 2018. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242-253. https://doi.org/10.1111/1365-2745.12871. Palpurina, S., Wagner, V., von Wehrden, H., et al. 2017. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Glob. Ecol. Biogeogr. 26, 425-434. https://doi.org/10.1111/geb.12549. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669. https://doi.org/10.1146/ecolsys.2006.37.issue-110.1146/annurev.ecolsys.37.091305.110100. Reed, S.C., Coe, K.K., Sparks, J.P., et al. 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Chang. 2, 752-755. https://doi.org/10.1038/nclimate1596. Roberts, D.W. 2020. Comparison of distance-based and model-based ordinations. Ecology 101, e02908. https://doi.org/10.1002/ecy.2908. Simova, I., Ordonez, A., and Storch, D. 2023. The dynamics of the diversity-energy relationship during the last 21,000 years. Glob. Ecol. Biogeogr. 32, 707-718. https://doi.org/10.1111/geb.13649. Saiz, H., Gomez-Gardenes, J., Borda, J.P., et al. 2018. The structure of plant spatial association networks is linked to plant diversity in global drylands. J. Ecol. 106, 1443-1453. https://doi.org/10.1111/1365-2745.12935. Schimel, D.S. 2010. Drylands in the earth system. Science 327, 418-419. https://doi.org/10.1126/science.1184946. Spaak, J.W., Baert, J.M., Baird, D.J., et al. 2017. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecol. Lett. 20, 1315-1324. https://doi.org/10.1111/ele.12828. Sun, Y., Sun, Y., Yao, S., et al. 2021. Impact of climate change on plant species richness across drylands in China: From past to present and into the future. Ecol. Indic. 132, 108288. https://doi.org/10.1016/j.ecolind.2021.108288. Tang, Z., Wang, Z., Zheng, C., et al. 2006. Biodiversity in China's mountains. Front. Ecol. Environ. 4, 347-352. https://doi.org/10.1890/1540-9295(2006)004[0347:BICM]2.0.CO;2. Tao, Y., Qiu, D., Gong, Y., et al. 2022. Leaf-root-soil N:P stoichiometry of ephemeral plants in a temperate desert in Central Asia. J. Plant Res. 135, 55-67. https://doi.org/10.1007/s10265-021-01355-8. Therneau, T.M., and Atkinson, E.J. 2019. An introduction to recursive partitioning using the RPART routines. Rochester, M.N: Division of biomedical statistics and informatics, Mayo Clinic; 2018. https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf. Ulrich, W., Soliveres, S., Maestre, F.T., et al. 2014. Climate and soil attributes determine plant species turnover in global drylands. J. Biogeogr. 41, 2307-2319. https://doi.org/10.1111/jbi.12377. Wang, C., Wang, S., Fu, B., et al. 2017. Precipitation gradient determines the tradeoff between soil moisture and soil organic carbon, total nitrogen, and species richness in the Loess Plateau, China. Sci. Total Environ. 575, 1538-1545. https://doi.org/10.1016/j.scitotenv.2016.10.047. Wang, Z., Fang, J., Tang, Z., et al. 2010. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B-Biol. Sci. 278, 2122-2132. https://doi.org/10.1098/rspb.2010.1897. Wright, I.J., Reich, P.B., Westoby, M., et al. 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403. Xu, X., Wang, Z., Rahbek, C., et al. 2016. Geographical variation in the importance of water and energy for oak diversity. J. Biogeogr. 43, 279-288. https://doi.org/10.1111/jbi.12620. Yao, S., Akram, M.A., Hu, W., et al. 2021. Effects of water and energy on plant diversity along the aridity gradient across dryland in China. Plants 10, 636. https://doi.org/10.3390/plants10040636. Zhang, R., Liu, T., Zhang, J., et al. 2015. Spatial and environmental determinants of plant species diversity in a temperate desert. J. Plant Ecol. 9, 124-131. https://doi.org/10.1093/jpe/rtv053. Zhu, J., Yu, J., Wang, P., et al. 2013. Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern China. Ecohydrology 6, 191-200. https://doi.org/10.1002/eco.1258. |