[1] Bolger, A.M., Lohse, M., Usadel, B. 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120, https://doi.org/10.1093/bioinformatics/btu170. [2] Chen, A., Dubcovsky, J., 2012. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet. 8, e1003134, https://doi.org/10.1371/journal.pgen.1003134. [3] Chen, A., Li, C.X., Hu, W., et al., 2014. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc. Natl. Acad. Sci. U.S.A. 111(8), 10037-10044, https://doi.org/10.1073/pnas.1409795111. [4] Chen, Y.M., Song, W.J., Xie, X.M., et al., 2020. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694-1708, https://doi.org/10.1016/j.molp.2020.09.019. [5] Danyluk, J., Kane, N.A., Breton, G., et al., 2003. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849-1860, https://doi.org/10.1104/pp.103.023523. [6] Deng, W., Casao, M.C., Wang, P., et al., 2015. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 6, 5882, https://doi.org/10.1038/ncomms6882. [7] Diallo, A.O., Ali-Benali, M.A., Badawi, M., et al., 2012. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol. Genet. Genom. 287, 575-590, https://doi.org/10.1007/s00438-012-0701-0. [8] Distelfeld, A., Dubcovsky, J., 2010. Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Mol. Genet. Genom. 283, 223-232, https://doi.org/10.1007/s00438-009-0510-2. [9] Distelfeld, A., Tranquilli, G., Li, C.X., et al., 2009. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 149, 245-257, https://doi.org/10.1104/pp.108.129353. [10] Dobin, A., Davis, C.A., Schlesinger, F., et al. 2013. STAR:ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15-21, https://doi.org/10.1093/bioinformatics/bts635. [11] Gororo, N.N., Flood, R.G., Eastwood, R.F., et al., 2001. Photoperiod and vernalization responses in Triticum turgidum×T. Tauschii synthetic hexaploid wheats. Ann. Bot. 88, 947-952, https://doi.org/10.1006/anbo.2001.1531. [12] Greenup, A.G., Sasani, S., Oliver, S.N., et al., 2010. ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol. 153, 1062-1073, https://doi.org/10.1104/pp.109.152488. [13] Huan, Q., Mao, Z.W., Chong, K., et al., 2018. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. New Phytol. 219, 1373-1387, https://doi.org/10.1111/nph.15288. [14] Huan, Q., Mao, Z.W., Zhang, J.Y., et al. 2013. Transcriptome-wide analysis of vernalization reveals conserved and species-specific mechanisms in Brachypodium. J. Integr. Plant Biol. 55, 696-709, https://doi.org/10.1111/jipb.12050. [15] Inukai S., Kock, K.H., Bulyk, M.L., 2017. Transcription factor-DNA binding:beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110-119, https://doi.org/10.1016/j.gde.2017.02.007. [16] Kamran, A., Iqbal, M., Spaner, D., 2014. Flowering time in wheat (Triticum aestivum L.):a key factor for global adaptability. Euphytica 197, 1-26, https://doi.org/10.1007/s10681-014-1075-7. [17] Khan, A.R., Enjalbert, J., Marsollier, A.C., et al., 2013. Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1(VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol. 13, 209, https://doi.org/10.1186/1471-2229-13-209. [18] Kippes, N., Debernardi, J.M., Vasquez-Gross, H.A., et al., 2015. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc. Natl. Acad. Sci. U.S.A. 112, E5401-E5410, https://doi.org/10.1073/pnas.1514883112. [19] Konopatskaia, I., Vavilova,V., Kondratenko, E.Y., et al., 2016. VRN1 genes variability in tetraploid wheat species with a spring growth habit. BMC Plant Biol. 16, 244, https://doi.org/10.1186/s12870-016-0924-z. [20] Li, B., Dewey, C.N. 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12, 323, https://doi.org/10.1186/1471-2105-12-323. [21] Li C.X., Dubcovsky, J., 2008. Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J. 55, 543-554, https://doi.org/10.1111/j.1365-313X.2008.03526.x. [22] Li, C.X., Lin, H.Q., Dubcovsky, J., 2015. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J. 84, 70-82, https://doi.org/10.1111/tpj.12960. [23] Love, M.I., Huber, W., Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 550, https://doi.org/10.1186/s13059-014-0550-8. [24] Lyu, F.Y., Han, F.R., Ge, C.L., et al., 2023. OmicStudio:a composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication. iMeta 2, e85, https://doi.org/10.1002/imt2.85. [25] Mizuno, N., Kinoshita, M., Kinoshita, S., et al., 2016. Loss-of-Function mutations in three homoeologous PHYTOCLOCK 1 genes in common wheat are associated with the extra-early flowering phenotype. PLoS One 11, e0165618, https://doi.org/10.1371/journal.pone.0165618. [26] Mizuno, N., Nitta, M., Sato, K., et al., 2012. A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet. Syst. 87, 357-367, https://doi.org/10.1266/ggs.87.357. [27] Oliver, S.N., Finnegan, E.J., Dennis, E.S., et al., 2009. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc. Natl. Acad. Sci. U.S.A. 106, 8386-8391, https://doi.org/10.1073/pnas.0903566106. [28] Park, S., Lee, C.M., Doherty, C.J., et al., 2015. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 82, 193-207, https://doi.org/10.1111/tpj.12796. [29] Pearce, S., Kippes, N., Chen A., et al., 2016. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol. 16, 141, https://doi.org/10.1186/s12870-016-0831-3. [30] Trevaskis, B., 2010. The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct. Plant Biol. 37, 479-487, https://doi.org/10.1071/FP10056. [31] Wang, M., Li, Z., Zhang, Y., et al. 2021. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Plant Cell. 33, 865-881, https://doi.org/10.1093/plcell/koab028. [32] Xie, L., Zhang, Y., Wang, K., et al., 2021. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytol. 231, 834-848, https://doi.org/10.1111/nph.16339. [33] Xu, S.J., Chong, K., 2018. Remembering winter through vernalisation. Nat. Plants 4, 997-1009, https://doi.org/10.1038/s41477-018-0301-z. [34] Xu, S.J., Dong, Q., Deng, M., et al., 2021. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol. Plant 14, 1525-1538, https://doi.org/10.1016/j.molp.2021.05.026. [35] Yan, L., Fu, D., Li, C., et al., 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. U.S.A. 3, 19581-19586, https://doi.org/10.1073/pnas.0607142103. [36] Yan, L., Loukoianov, A., Blechl, A., et al., 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644, https://doi.org/10.1073/pnas.0937399100. [37] Yan, L., Loukoianov, A., Tranquilli, G., et al., 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. U.S.A. 100, 6263-6268, https://doi.org/10.1073/pnas.0937399100. [38] Zhao, L., Xie, L., Zhang, Q., et al., 2020. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658, https://doi.org/10.1038/s41467-020-16457-5. |