[1] Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., et al., 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285-1291. [2] Akinlabi, E.T., Anane-Fenin, K., Akwada, D.R., 2017. Bamboo-the Multipurpose Plant. Springer International Publishing, Cham. pp. 262. [3] Allen, C., Macalady, A., Chenchouni, H., et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660-684. [4] Anderegg, W.R.L., Klein, T., Bartlett, M., et al., 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. U.S.A. 113, 5024-5029. [5] Anderegg, W.R.L., Wolf, A., Arango-Velez, A., et al., 2018. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968-977. [6] Aritsara, A.N.A., Wang, S., Li, B.N., et al., 2022. Divergent leaf and fine root "pressure-volume relationships" across habitats with varying water availability. Plant Physiol. 190, 2246-2259. [7] Banik, R.L., 2015. Morphology and Growth, Bamboo:the Plant and its Uses. Springer, pp. 43-89. [8] Bartlett, M.K., Zhang, Y., Kreidler, N., et al., 2014. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580-1590. [9] Brodersen, C.R., McElrone, A.J., Choat, B., et al., 2013. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol. 161, 1820-1829. [10] Brodribb, T.J., Brodersen, C.R., Carriqui, M., et al., 2021. Linking xylem network failure with leaf tissue death. New Phytol. 232, 68-79. [11] Brodribb, T.J., Skelton, R.P., McAdam, S.A., et al., 2016. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol. 209, 1403-1409. [12] Canadell, J., Jackson, R.B., Ehleringer, J.B., et al., 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583-595. [13] Cao, K.F., Yang, S.J., Zhang, Y.J., et al., 2012. The maximum height of grasses is determined by roots. Ecol. Lett. 15, 666-672. [14] Carminati, A., Ahmed, M.A., Zarebanadkouki, M., et al., 2020. Stomatal closure prevents the drop in soil water potential around roots. New Phytol. 226, 1541-1543. [15] Chen, Y.J., Choat, B., Sterck, F., et al., 2021a. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecol. Lett. 24, 2350-2363. [16] Chen, Y.J., Maenpuen, P., Zhang, Y.J., et al., 2021b. Quantifying vulnerability to embolism in tropical trees and lianas using five methods:can discrepancies be explained by xylem structural traits?New Phytol. 229, 805-819. [17] Choat, B., Brodribb, T.J., Brodersen, C.R., et al., 2018. Triggers of tree mortality under drought. Nature 558, 531-539. [18] Choat, B., Jansen, S., Brodribb, T.J., et al., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752-755. [19] Clark, L.G., Londono, X., Ruiz-Sanchez, E., 2015. Bamboo taxonomy and habitat, In:Liese, W, Kohl, M (eds), Bamboo:the Plant and its Uses. Springer International Publishing, Cham, pp. 1-30. [20] Dai, A.G., 2011. Drought under global warming:a review. WIREs Climate Change 2, 45-65. [21] Ding, T., Gao, H., 2020. The record-breaking extreme drought in Yunnan province, Southwest China during spring-early summer of 2019 and possible causes. J. Meteorol. Res. 34, 997-1012. [22] Dixon, H.H., Joly, J., 1895. On the ascent of sap. Philos. Trans. R. Soc. Lond. B Biol. Sci. 186, 563-576. [23] Doughty, C.E., Keany, J.M., Wiebe, B.C., et al., 2023. Tropical forests are approaching critical temperature thresholds. Nature 621, 105-111. [24] Duursma, R., Choat, B., 2017. Fitplc-an R package to fit hydraulic vulnerability curves. J. Plant Hydraul. 4, e002. [25] Enarth Maviton, M., Sankar, V.R., 2023. reportGlobal Priority Species of Economically Important Bamboo, INBAR Technical Report No. 44 ed. International Bamboo and Rattan Organization, Beijing. pp. 210. [26] Ennajeh, M., Tounekti, T., Vadel, A.M., et al., 2008. Water relations and drought-induced embolism in olive (Olea europaea) varieties‘Meski'and‘Chemlali'during severe drought. Tree Physiol. 28, 971-976. [27] Fadrique, B., Gann, D., Nelson, B.W., et al., 2021. Bamboo phenology and life cycle drive seasonal and long-term functioning of Amazonian bamboo-dominated forests. J. Ecol. 109, 860-876. [28] Feng, W.J., Leung, M.Y.T., Wang, D.X., et al., 2022. An extreme drought over South China in 2020/21 concurrent with an unprecedented warm Northwest Pacific and La Nina. 39, 1637-1649. [29] Hacke, U.G., Sperry, J.S., 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Systemat. 4, 97-115. [30] Hacke, U.G., Sperry, J.S., Wheeler, J.K., et al., 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26, 689-701. [31] Hacke, U.G., Stiller, V., Sperry, J.S., et al., 2001. Cavitation fatigue, embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol. 125, 779-786. [32] Hammond, W.M., Williams, A.P., Abatzoglou, J.T., et al., 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nat. Commun. 13, 1761. [33] Hao, G.Y., Sack, L., Wang, A.Y., et al., 2010. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731-740. [34] Jacobsen, A., Pratt, R.B., Davis, S., et al., 2014. Geographic and seasonal variation in chaparral vulnerability to cavitation. Madrono 61, 317-327. [35] Johnson, D.M., Wortemann, R., McCulloh, K.A., et al., 2016. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol. 36, 983-993. [36] Kukowski, K.R., Schwinning, S., Schwartz, B.F., 2013. Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock. Oecologia 171, 819-830. [37] Levionnois, S., Ziegler, C., Jansen, S., et al., 2020. Vulnerability and hydraulic segmentations at the stem-leaf transition:coordination across Neotropical trees. New Phytol. 228, 512-524. [38] Li, Y.Y., Sperry, J.S., Shao, M.G., 2009. Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance. Environ. Exp. Bot. 66, 341-346. [39] Liese, W., Kohl, M., 2015. Bamboo-the Plant and its Uses. Springer Cham, Springer International Publishing Switzerland. pp. 356. [40] Lobo, A., Torres-Ruiz, J.M., Burlett, R., et al., 2018. Assessing inter-and intraspecific variability of xylem vulnerability to embolism in oaks. For. Ecol. Manag. 424, 53-61. [41] McDowell, N.G., Sapes, G., Pivovaroff, A., et al., 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294-308. [42] Meinzer, F.C., Johnson, D.M., Lachenbruch, B., et al., 2009. Xylem hydraulic safety margins in woody plants:coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922-930. [43] Pammenter, N.W., Vander Willigen, C., 1998. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol. 18, 589-593. [44] Pausas, J.G., Paula, S., 2020. Grasses and fire:the importance of hiding buds. New Phytol. 226, 957-959. [45] Perez-Harguindeguy, N., Diaz, S., Garnier, E., et al., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167-234. [46] Pivovaroff, A.L., Sack, L., Santiago, L.S., 2014. Coordination of stem and leaf hydraulic conductance in southern California shrubs:a test of the hydraulic segmentation hypothesis. New Phytol. 203, 842-850. [47] R Core Team, 2023 R:A Language and Environment for Statistical Computing,(Vienna, Austria). [48] Sack, L., Pasquet-Kok, J., Contributors, P., 2011. Leaf Pressure-Volume Curve Parameters. Prometheus. [49] Schenk, H.J., Jackson, R.B., 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480-494. [50] Schenk, H.J., Jackson, R.B., 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126, 129-140. [51] Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji:an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. [52] Scoffoni, C., Albuquerque, C., Brodersen, C.R., et al., 2017. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiol. 173, 1197-1210. [53] Shen, J.X., Zhang, Y.J., Maenpuen, P., et al., 2022. Response of four evergreen savanna shrubs to an incidence of extreme drought:high embolism resistance, branch shedding and maintenance of nonstructural carbohydrates. Tree Physiol. 42, 740-753. [54] Skelton, R.P., Brodribb, T.J., Choat, B., 2017. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 214, 561-569. [55] Smith-Martin, C.M., Muscarella, R., Hammond, W.M., et al., 2023. Hydraulic variability of tropical forests is largely independent of water availability. Ecol. Lett. 26, 1829-1839. [56] Stock, B.C., Semmens, B.X., 2016. MixSIAR GUI User Manual, 3.1 ed, pp. 72. [57] Tao, S., Chave, J., Frison, P.L., et al., 2022. Increasing and widespread vulnerability of intact tropical rainforests to repeated droughts. Proc. Natl. Acad. Sci. U.S.A. 119, e2116626119. [58] Terra, M.d.C.N.S., Prado-Junior, J.A.d., Souza, C.R.d., et al., 2021. Tree species dominance in neotropical savanna aboveground biomass and productivity. For. Ecol. Manag. 496, 119430. [59] Tyree, M.T., 1997. The Cohesion-Tension theory of sap ascent:current controversies. J. Exp. Bot. 48, 1753-1765. [60] Tyree, M.T., Zimmermann, M.H., 2002. Xylem Structure and the Ascent of Sap. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 283. [61] Vargas, G.G., Brodribb, T.J., Dupuy, J.M., et al., 2021. Beyond leaf habit:generalities in plant function across 97 tropical dry forest tree species. New Phytol. 232, 148-161. [62] Vorontsova, M., Clark, L., Dransfield, J., et al., 2016. World Checklist of Bamboos and Rattans. INBAR, Beijing, p. 454. [63] Warton, D.I., Duursma, R.A., Falster, D.S., et al., 2012. Smatr 3-an R package for estimation and inference about allometric lines:the smatr 3-an R package. Methods Ecol. Evol. 3, 257-259. [64] Watson, D.J., 1968. A prospect of crop physiology. Ann. Appl. Biol. 62, 1-9. [65] West, A.G., Dawson, T.E., February, E.C., et al., 2012. Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa. New Phytol. 195, 396-407. [66] Wheeler, J., Huggett, B., Tofte, A., et al., 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Enrivon. 36, 1938-1949. [67] Yan, C.L., Ni, M.Y., Cao, K.F., et al., 2020. Leaf hydraulic safety margin and safety-efficiency trade-off across angiosperm woody species. Biol. Lett. 16, 20200456. [68] Yang, Y.M., Wang, K.L., Pei, S.J., et al., 2004. Bamboo diversity and traditional uses in Yunnan, China. Mt. Res. Dev. 24, 157-165. [69] Yang, D.M., Zhou, W., Wang, X.L., et al., 2023. An analytical complete model of root pressure generation:theoretical bases for studying hydraulics of bamboo. Plant Cell Environ 47, 59-71. [70] Yuan, X., Wang, L.Y., Wu, P.L., et al., 2019. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 10, 4661. [71] Yuen, J.Q., Fung, T., Ziegler, A.D., 2017. Carbon stocks in bamboo ecosystems worldwide:estimates and uncertainties. For. Ecol. Manag. 393, 113-138. [72] Zhang, M.X., Chen, S.L., Jiang, H., et al., 2019. Water-use characteristics and physiological response of Moso bamboo to flash droughts. Int. J. Environ. Res. Publ. Health 16, 2174. [73] Zhou, M.Y., Zhang, Y.X., Haevermans, T., et al., 2017. Towards a complete generic-level plastid phylogeny of the paleotropical woody bamboos (Poaceae:Bambusoideae). Taxon 66, 539-553. [74] Zhu, S.D., Chen, Y.J., Ye, Q., et al., 2018. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol. 38, 658-663. [75] Zhu, S.D., Liu, H., Xu, Q.Y., et al., 2016. Are leaves more vulnerable to cavitation than branches?Funct. Ecol. 30, 1740-1744. |