[1] Dai, G.H., Wang, S., Geng, Y.P., et al., 2021. Potential risks of Tithonia diversifolia in Yunnan Province under climate change. Ecol. Res. 36, 129-144. [2] Deans, R.M., Brodribb, T.J., Busch, F.A., et al., 2019. Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis. New Phytol. 222, 382-395. [3] Diagne, C., Leroy, B., Vaissiere, A.C., et al., 2021. High and rising economic costs of biological invasions worldwide. Nature 592, 571-576. [4] Drake, P.L., Froend, R.H., Franks, P.J., 2013. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64, 495-505. [5] Elliott-Kingston, C., Haworth, M., Yearsley, J.M., et al., 2016. Does size matter? Atmospheric CO2 may Be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Front. Plant Sci. 7, 1253. [6] Kaiser, E., Kromdijk, J., Harbinson, J., et al., 2017. Photosynthetic induction and its diffusion, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Ann. Bot. 119, 191-205. [7] Kaiser, E., Morales, A., Harbinson, J., et al., 2016. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Sci. Rep. 6, 31252. [8] Kato-Noguchi, H., 2020. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants-Basel. 9, 766. [9] Knapp, A.K., Smith, W.K., 1987. Stomatal and photosynthetic responses during sun/shade transitions in subalpine plants:influence on water use efficiency. Oecologia. 74, 62-67. [10] Laduke, J., 1982. Revision of Tithonia. Rhodora. 84, 453-522. [11] Lawson, T., Blatt, M.R., 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556-1570. [12] Liu, W.J., Zhang, Y.P., Li, H.M., et al., 2004. Fog characteristics in a tropical seasonal rain forest in Xishuangbanna. Chin. J. Plant Ecol. 28, 264-270. [13] Liu, J., Zhang, J., Estavillo, G.M., et al., 2021. Leaf N content regulates the speed of photosynthetic induction under fluctuating light among canola genotypes (Brassica napus L.). Physiol. Plantarum 172, 1844-1852. [14] Morales, E., 2000. Estimating phylogenetic inertia in Tithonia (Asteraceae):a comparative approach. Evolution. 54, 475-484. [15] Mott, K.A., Woodrow, I.E., 2000. Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. J. Exp. Bot. 51, 399-406. [16] Obiakara, M.C., Fourcade, Y., 2018. Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS One. 13, e0202421. [17] Otusanya, O.O., Ilori, O., 2012. Phytochemical screening and the phytotoxic effects of aqueous extracts of Tithonia diversifolia (hemsl) A. Gray. Int. J. Biol. 4, 97. [18] Oyerinde, R.O., Otusanya, O.O., Akpor, O. B., 2009. Allelopathic effect of Tithonia diversifolia on the germination, growth and chlorophyll contents of maize (Zea mays L.). Sci. Res. Essays 4, 1553-1558. [19] Pearcy, R.W., 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 421-453. [20] Pearcy, R.W. 1994. Photosynthetic Utilization of Sunflecks:A Temporally Patchy Resource on a Time Scale of Seconds to Minutes. [21] R Core Team, 2020. R:A Language and Environment for Statistical Computing. R. Foundation for Statistical Computing, Vienna, Austria. Retrieved from. https://www.R-project.org/. [22] Sakoda, K., Adachi, S., Yamori, W., et al., 2022. Towards improved dynamic photosynthesis in C3 crops by utilising natural genetic variation. J. Exp. Bot. 73, 3109-3121. [23] Santelia, D., Lawson, T., 2016. Rethinking guard cell metabolism. Plant Physiol. 172, 1371-1392. [24] Slattery, R.A., Walker, B.J., Weber, A.P.M., et al., 2018. The impacts of fluctuating light on crop performance. Plant Physiol. 176, 990-1003. [25] Soleh, M.A., Tanaka, Y., Kim, S.Y., et al., 2017. Identification of large variation in the photosynthetic induction response among 37 soybean[Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity. Photosynth. Res. 131, 305-315. [26] Sudo, E., Makino, A. and Mae, T. 2003, Differences between rice and wheat in ribulose-1,5-bisphosphate regeneration capacity per unit of leaf-N content. Plant Cell Environ. 26, 255-263. [27] Sun, H., Zhang, Y.Q., Zhang, S.B., et al., 2022. Photosynthetic induction under fluctuating light is affected by leaf nitrogen content in tomatoes. Front. Plant Sci. 13, 835571. [28] Takashima, T., Hikosaka, K. and Hirose, T. 2004, Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 27:1047-1054. [29] Tanaka, Y., Adachi, S., Yamori, W., 2019. Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Curr. Opin. Plant Biol. 49, 52-59. [30] Taylor, S.H., Long, S.P., 2017. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philos. Trans. R. Soc., B. 372, 20160543. [31] Voelker, S.L., Brooks, J.R., Meinzer, F.C., et al., 2016. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2:evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Global Change Biol. 22, 889-902. [32] Xiong, Z., Xiong, D.L., Cai, D.T., et al., 2022. Effect of stomatal morphology on leaf photosynthetic induction under fluctuating light across diploid and tetraploid rice. Environ. Exp. Bot. 194, 104757. [33] Zhang, Q., Peng, S.B., Li, Y., 2019. Increased rate of light-induced stomatal conductance is related to stomatal size in the Oryza genus. J. Exp. Bot. 70, 5259-5269. [34] Zhu, X.G., Ort, D., Whitmarsh, J., et al., 2004. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies:a theoretical analysis. J. Exp. Bot. 55, 1167-1175. |