Plant Diversity ›› 2020, Vol. 42 ›› Issue (02): 92-101.DOI: 10.1016/j.pld.2019.12.001
Yonglu Wei, Jianpeng Jin, Xiani Yao, Chuqiao Lu, Genfa Zhu, Fengxi Yang
收稿日期:
2019-07-20
修回日期:
2019-12-24
出版日期:
2020-04-25
发布日期:
2020-04-30
通讯作者:
Fengxi Yang
基金资助:
Yonglu Wei, Jianpeng Jin, Xiani Yao, Chuqiao Lu, Genfa Zhu, Fengxi Yang
Received:
2019-07-20
Revised:
2019-12-24
Online:
2020-04-25
Published:
2020-04-30
Supported by:
摘要: The floral morphology of Cymbidium ensifolium, a well-known orchid in China, has increasingly attracted horticultural and commercial attention. However, the molecular mechanisms that regulate flower development defects in C. ensifolium mutants are poorly understood. In this work, we examined a domesticated variety of C. ensifolium named ‘CuiYuMuDan’, or leaf-like flower mutant, which lacks typical characteristics of orchid floral organs but continues to produce sepal-to leaf-like structures along the inflorescence. We used comparative transcriptome analysis to identify 6234 genes that are differentially expressed between mutant and wild-type flowers. The majority of these differentially expressed genes are involved in membrane-building, anabolism regulation, and plant hormone signal transduction, implying that in the leaf-like mutant these processes play roles in the development of flower defects. In addition, we identified 152 differentially expressed transcription factors, including the bHLH, MYB, MIKC, and WRKY gene families. Moreover, we found 20 differentially expressed genes that are commonly involved in flower development, including MADS-box genes, CLAVATA3 (CLV3), WUSCHEL (WUS), and PERIANTHIA (PAN). Among them, floral homeotic genes were further investigated by phylogenetic analysis and expression validation, which displayed distinctive spatial expression patterns and significant changes between the wild type and the mutant. This is the first report on the C. ensifolium leaf-like flower mutant transcriptome. Our results shed light on the molecular regulation of orchid flower development, and may improve our understanding of floral patterning regulation and advance molecular breeding of Chinese orchids.
Yonglu Wei, Jianpeng Jin, Xiani Yao, Chuqiao Lu, Genfa Zhu, Fengxi Yang. Transcriptome Analysis Reveals Clues into leaf-like flower mutant in Chinese orchid Cymbidium ensifolium[J]. Plant Diversity, 2020, 42(02): 92-101.
Yonglu Wei, Jianpeng Jin, Xiani Yao, Chuqiao Lu, Genfa Zhu, Fengxi Yang. Transcriptome Analysis Reveals Clues into leaf-like flower mutant in Chinese orchid Cymbidium ensifolium[J]. Plant Diversity, 2020, 42(02): 92-101.
Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.C., Liu, K.W., Chen, L.J., He, Y., Xu, Q., Bian, C., et al., 2015. The genome sequence of the orchid Phalaenopsis equestris.Nat. Genet. 47, 65-72. Chang, Y.Y., Kao, N.H., Li, J.Y., Hsu, W.H., Liang, Y.L., Wu, J.W., et al., 2010. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol. 152, 837-853. Chao, Y.T., Yen, S.H., Yeh, J.H., Chen, W.C., Shih, M.C., 2017. Orchidstra 2.0-A transcriptomics resource for the orchid family. Plant Cell Physiol. 58, e9. Chen, D., Yan, W., Fu, L.Y., Kaufmann, K., 2018. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat. Commun. 9, 4534. Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M., 2005.Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676. Cucinotta, M., Manrique, S., Cuesta, C., Benkova, E., Novak, O., Colombo, L., 2018.CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. J. Exp. Bot. 69, 5169-5176. Dressler, R., 1993. Phylogeny and Classification of Orchid Family. Cambridge University Press, Cambridge, pp. 102-218. Ehlers, B.K., Olesen, J.M., Agren, J., 2002. Floral morphology and reproductive success in the orchid Epipactis helleborine: regional and local across-habitat variation. Plant Systemat. Evol. 236, 19-32. Ferrario, S., Busscher, J., Franken, J., Gerats, T., Vandenbussche, M., Angenent, G.C., Immink, R.G., 2004. Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16, 1490-1505. Fornara, F., Gregis, V., Pelucchi, N., Colombo, L., Kater, M., 2008. The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. J. Exp. Bot. 59, 2181-2190. Furumizu, C., Alvarez, J.P., Sakakibara, K., Bowman, J.L., 2015. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet. 11 e1004980. Givnish, T.J., Spalink, D., Ames, M., Lyon, S.P., Hunter, S.J., Zuluaga, A., Iles, W.J., Clements, M.A., Arroyo, M.T., Leebens-Mack, J., et al., 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. P Roy Soc Lond B Bio 1814, 282. Guo, L., Cao, X., Liu, Y., Li, J., Li, Y., Li, D., Zhang, K., Gao, C., Dong, A., Liu, X., 2018.A chromatin loop represses WUSCHEL expression in Arabidopsis. Plant J. 94, 1083-1097. Hsu, H.F., Hsu, W.H., Lee, Y.I., Mao, W.T., Yang, C.H., 2015. Model for perianth formation in orchids. Native Plants 1, 15046.Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res. 28, 27-30. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. Li, Z., Zeng, S., Li, Y., Li, M., Souer, E., 2016. Leaf-like sepals induced by ectopic expression of a SHORT VEGETATIVE PHASE (SVP)-Like MADS-box gene from the basal eudicot epimedium sagittatum. Front. Plant Sci. 7, 1461. Liu, N., Tu, L., Wang, L., Hu, H., Xu, J., Zhang, X., 2017. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC Plant Biol. 17, 7. MacLean, A.M., Sugio, A., Makarova, O.V., Findlay, K.C., Grieve, V.M., Toth, R., Nicolaisen, M., Hogenhout, S.A., 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 157, 831-841. Mitoma, M., Kajino, Y., Hayashi, R., Endo, M., Kubota, S., Kanno, A., 2019. Molecular mechanism underlying pseudopeloria in Habenaria radiata (orchidaceae). Plant J. 99, 439-451. Nicolas, M., Cubas, P., 2016a. The role of TCP transcription factors in shaping flower structure, leaf morphology, and plant architecture. In: Gonzalez, D.H. (Ed.), Plant Transcription Factors. Academic Press, Boston, pp. 249-267. Nicolas, M., Cubas, P., 2016b. TCP factors: new kids on the signaling block. Curr.Opin. Plant Biol. 33, 33-41. Pan, Z.J., Chen, Y.Y., Du, J.S., Chen, Y.Y., Chung, M.C., Tsai, W.C., et al., 2014. Flower development of Phalaenopsis orchid involves functionally divergent sepallatalike genes. New Phytol. 202, 1024-1042. Ramirez, S.R., Gravendeel, B., Singer, R.B., Marshall, C.R., Pierce, N.E., 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042-1045. Schultz, E.A., Haughn, G.W., 1991. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3, 771-781. Somssich, M., Je, B.I., Simon, R., Jackson, D., 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143, 3238-3248. Spinelli, S.V., Martin, A.P., Viola, I.L., Gonzalez, D.H., Palatnik, J.F., 2011. A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiol. 156, 1894-1904. Su, S., Shao, X., Zhu, C., Xu, J., Lu, H., Tang, Y., Jiao, K., Guo, W., Xiao, W., Liu, Z., et al., 2018a. Transcriptome-wide analysis reveals the origin of peloria in Chinese Cymbidium (Cymbidium sinense). Plant Cell Physiol. 59, 2064-2074. Su, S., Shao, X., Zhu, C., Xu, J., Tang, Y., Luo, D., Huang, X., 2018b. An AGAMOUS-like factor is associated with the origin of two domesticated varieties in Cymbidium sinense (Orchidaceae). Hortic. Res. 5, 48. Sun, Y., Wang, G., Li, Y., Jiang, L., Yang, Y., Guan, S., 2016. De novo transcriptome sequencing and comparative analysis to discover genes related to floral development in Cymbidium faberi Rolfe. SpringerPlus 5, 1458. Tao, Y., Chen, M., Shu, Y., Zhu, Y., Wang, S., Huang, L., Yu, X., Wang, Z., Qian, P., Gu, W., et al., 2018. Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean. Plant Cell Tiss Org (PCTOC) 134, 331-344. Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H., Chen, H.H., 2004. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45, 831-844. Uemura, A., Yamaguchi, N., Xu, Y., Wee, W., Ichihashi, Y., Suzuki, T., Shibata, A., Shirasu, K., Ito, T., 2018. Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. Plant Reprod. 31, 89-105. Wang, J., Tian, C., Zhang, C., Shi, B., Cao, X., Zhang, T.Q., et al., 2017. Cytokinin signaling activates wuschel expression during axillary meristem initiation.Plant Cell 29, 1373-1387. Xiang, L., Chen, Y., Chen, L., Fu, X., Zhao, K., Zhang, J., Sun, C., 2018. B and E MADSbox genes determine the perianth formation in Cymbidium goeringii Rchb. f.Physiol Plant 162, 353-369. Yan, L., Wang, X., Liu, H., Tian, Y., Lian, J., Yang, R., Hao, S., Yang, S., Li, Q., Qi, S., et al., 2015. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol. Plant 8, 922-934. Yang, F., Zhu, G., 2015. Digital gene expression analysis based on de novo transcriptome assembly reveals new genes associated with floral organ differentiation of the orchid plant Cymbidium ensifolium. PloS One 10 e0142434. Yang, F., Zhu, G., Wang, Z., Liu, H., Xu, Q., Huang, D., Zhao, C., 2017. Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii. BMC Genom. 18, 367. Yang, F., Zhu, G., Wei, Y., Gao, J., Liang, G., Peng, L., Lu, C., Jin, J., 2019. Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii. BMC Genom. 20, 53. Yu, H., Ito, T., Wellmer, F., Meyerowitz, E.M., 2004. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat. Genet. 36, 157-161. Zhang, Z., Yan, Y., Tian, Y., Li, J., He, J.-S., Tang, Z., 2015. Distribution and conservation of orchid species richness in China. Biol. Conserv. 181, 64-72. Zhang, G.Q., Liu, K.W., Li, Z., Lohaus, R., Hsiao, Y.Y., Niu, S.C., Wang, J.Y., Lin, Y.C., Xu, Q., Chen, L.J., et al., 2017. The Apostasia genome and the evolution of orchids. Nature 549, 379-383. |
[1] | Shuo Feng (封烁), Haixia Ma (马海霞), Yu Yin (殷钰), Wei Wan (万薇), Kangshan Mao (毛康珊), Dafu Ru (汝大福). A complex interplay of genetic introgression and local adaptation during the evolutionary history of three closely related spruce species[J]. Plant Diversity, 2025, 47(04): 620-632. |
[2] | Jing Chen, Jingjing Cao, Binglin Guo, Meixu Han, Zhipei Feng, Jinqi Tang, Xiaohan Mo, Junjian Wang, Qingpei Yang, Yuxin Pei, Yakov Kuzyakov, Junxiang Ding, Naoki Makita, Xitian Yang, Haiyang Zhang, Yong Zhao, Deliang Kong. Increased dependence on mycorrhizal fungi for nutrient acquisition under carbon limitation by tree girdling[J]. Plant Diversity, 2025, 47(03): 466-478. |
[3] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species[J]. Plant Diversity, 2025, 47(01): 53-67. |
[4] | Yajun Wang, Hanchen Wang, Chao Ye, Zhiping Wang, Chongbo Ma, Dongliang Lin, Xiaohua Jin. Progress in systematics and biogeography of Orchidaceae[J]. Plant Diversity, 2024, 46(04): 425-434. |
[5] | Yohannes Besufekad Setotaw, Jing Li, Jinfeng Qi, Canrong Ma, Mou Zhang, Cuilian Huang, Lei Wang, Jianqiang Wu. Salicylic acid positively regulates maize defenses against lepidopteran insects[J]. Plant Diversity, 2024, 46(04): 519-529. |
[6] | Zi-Yan Zhang, He-Xiao Xia, Meng-Jie Yuan, Feng Gao, Wen-Hua Bao, Lan Jin, Min Li, Yong Li. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut[J]. Plant Diversity, 2024, 46(03): 309-320. |
[7] | Shanni Cao, Xue Zhao, Zhuojin Li, Ranran Yu, Yuqi Li, Xinkai Zhou, Wenhao Yan, Dijun Chen, Chao He. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification[J]. Plant Diversity, 2024, 46(03): 372-385. |
[8] | Anna A. Betekhtina, Daria E. Tukova, Denis V. Veselkin. Root structure syndromes of four families of monocots in the Middle Urals[J]. Plant Diversity, 2023, 45(06): 722-731. |
[9] | Yu-Wen Zhang, Yu-Cen Shi, Shi-Bao Zhang. Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile[J]. Plant Diversity, 2023, 45(03): 326-336. |
[10] | Irina A. Kirillova, Yuriy A. Dubrovskiy, Svetlana V. Degteva, Alexander B. Novakovskiy. Ecological and habitat ranges of orchids in the northernmost regions of their distribution areas: A case study from Ural Mountains, Russia[J]. Plant Diversity, 2023, 45(02): 211-218. |
[11] | Brandon E. Gutiérrez-Rodríguez, Marilyn Vásquez-Cruz, Victoria Sosa. Phylogenetic endemism of the orchids of Megamexico reveals complementary areas for conservation[J]. Plant Diversity, 2022, 44(04): 351-359. |
[12] | Bing-Hua Chen, Xiao-Hua Jin. Neottia wuyishanensis (Orchidaceae: Neottieae), a new species from Fujian, China[J]. Plant Diversity, 2021, 43(05): 426-431. |
[13] | Qiang Liu, Ji-Dong Ya, Xun-Feng Wu, Bing-Yi Shao, Kuan-Bo Chi, Hai-Lei Zheng, Jian-Wu Li, Xiao-Hua Jin. New taxa of tribe Gastrodieae (Epidendroideae, Orchidaceae) from Yunnan, China and its conservation implication[J]. Plant Diversity, 2021, 43(05): 420-425. |
[14] | Ji-Dong Ya, Dong-Liang Lin, Zhou-Dong Han, Lei Cai, Zhi-Rong Zhang, De-Ming He, Xiao-Hua Jin, Wen-Bin Yu. Three new species of Liparis s.l. (Orchidaceae: Malaxideae) from Southwest China based on morphological characters and phylogenetic evidence[J]. Plant Diversity, 2021, 43(05): 401-408. |
[15] | Dong-Liang Lin, Ji-Dong Ya, André Schuiteman, Chong-Bo Ma, Cheng Liu, Xue-Lian Guo, Shi-Si Chen, Xi-Long Wang, Zhi-Rong Zhang, Wen-Bin Yu, Xiao-Hua Jin. Four new species and a new record of Orchidinae (Orchidaceae: Orchideae) from China[J]. Plant Diversity, 2021, 43(05): 390-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||