Plant Diversity ›› 2019, Vol. 41 ›› Issue (03): 198-205.DOI: 10.1016/j.pld.2019.04.005
Joseph O. Ondiera,b, Daniel O. Okachc, John C. Onyangoa, Dennis O. Otienob,c
收稿日期:
2018-12-21
修回日期:
2019-04-16
出版日期:
2019-06-25
发布日期:
2019-08-15
通讯作者:
Joseph O. Ondier,E-mail address:josephondier@yahoo.com
基金资助:
Joseph O. Ondiera,b, Daniel O. Okachc, John C. Onyangoa, Dennis O. Otienob,c
Received:
2018-12-21
Revised:
2019-04-16
Online:
2019-06-25
Published:
2019-08-15
Contact:
Joseph O. Ondier,E-mail address:josephondier@yahoo.com
Supported by:
摘要: Changes in rainfall regime and grazing pressure affect vegetation composition and diversity with ecological implications for savannahs. The savannah in East Africa has experienced increased livestock grazing and rainfall variability but the impacts associated with those changes on the herbaceous layer have rarely been documented. We investigated the effect of livestock grazing, rainfall manipulation and their interaction on the composition and diversity of the herbaceous community in the savannah for two years in Lambwe, Kenya. Rainfall manipulation plots were set up for vegetation sampling; these plots received either 50% more or 50% less rainfall than control plots. Simpson's diversity and Bergere-Parker indices were used to determine diversity changes and dominance respectively. The frequency of species was used to compute their abundance and their life forms as determined from the literature. Grazing significantly increased species diversity through suppression of dominant species. Rainfall manipulation had no significant impact on plant diversity in fenced plots, but rainfall reduction significantly reduced diversity in grazed plots. In contrast, rainfall manipulation had no impact on dominance in either fenced or grazed plots. The interaction of grazing and rainfall manipulation is complex and will require additional survey campaigns to create a complete picture of the implications for savannah structure and composition.
Joseph O. Ondier, Daniel O. Okach, John C. Onyango, Dennis O. Otieno. Interactive influence of rainfall manipulation and livestock grazing on species diversity of the herbaceous layer community in a humid savannah in Kenya[J]. Plant Diversity, 2019, 41(03): 198-205.
Joseph O. Ondier, Daniel O. Okach, John C. Onyango, Dennis O. Otieno. Interactive influence of rainfall manipulation and livestock grazing on species diversity of the herbaceous layer community in a humid savannah in Kenya[J]. Plant Diversity, 2019, 41(03): 198-205.
土层 Soil layer | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|
有机层 Organic layer | 6.2 ± 0.3 | 160.20 ± 15.70 | 58.02 ± 0.88 | 1.70 ± 0.01 |
表1 研究样地土壤有机层基本化学性质(平均值±标准误差)
Table 1 Basic chemical properties of the soil organic layer at study sites (mean ± SE)
土层 Soil layer | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) |
---|---|---|---|---|
有机层 Organic layer | 6.2 ± 0.3 | 160.20 ± 15.70 | 58.02 ± 0.88 | 1.70 ± 0.01 |
物种 Species | 半纤维素Hemicellulose (%) | C (%) | N (%) | P (%) | 木质素Lignin (%) | 纤维素Cellulose (%) | C:N | C:P | N:P | Lignin:N |
---|---|---|---|---|---|---|---|---|---|---|
方枝柏 Sabina saltuaria | 8.06 ± 0.09b | 51.64 ± 1.77bc | 0.88 ± 0.01b | 0.12 ± 0.01cd | 14.07 ± 0.74b | 12.22 ± 0.38a | 58.86 ± 2.21b | 416.02 ± 14.04a | 7.08 ± 0.41ab | 16.04 ± 1.01a |
岷江冷杉 Abies faxoniana | 12.86 ± 0.11c | 50.56 ± 2.96b | 0.88 ± 0.01b | 0.11 ± 0.01bc | 15.85 ± 0.36b | 12.19 ± 0.20b | 57.77 ± 3.53b | 443.51 ± 36.69ab | 7.68 ± 0.72b | 18.11 ± 0.42b |
四川红杉 Larix mastersiana | 5.50 ± 0.20a | 54.35 ± 0.63c | 0.86 ± 0.04b | 0.13 ± 0.01d | 27.21 ± 2.21d | 16.45 ± 0.44d | 63.32 ± 3.49b | 407.08 ± 2.42a | 6.44 ± 0.38a | 25.95 ± 1.08c |
红桦 Betula albosinensis | 12.74 ± 0.10c | 49.69 ± 1.45b | 1.33 ± 0.02d | 0.09 ± 0.01a | 36.68 ± 0.62b | 12.47 ± 0.38e | 37.24 ± 1.35a | 544.94 ± 31.72c | 14.63 ± 0.36d | 25.99 ± 0.37c |
高山杜鹃 Rhododendron lapponicum | 8.07 ± 0.31b | 50.29 ± 0.16b | 0.67 ± 0.02a | 0.11 ± 0.01b | 20.81 ± 0.18c | 14.07 ± 0.41c | 75.54 ± 4.47c | 471.14 ± 42.04b | 6.25 ± 0.65a | 31.24 ± 0.69d |
表2 5种亚高山森林凋落物物种名称及其初始质量(平均值±标准误差, n = 3)
Table 2 Species identity and initial quality of the five litter types of the subalpine forest (mean ± SE, n = 3)
物种 Species | 半纤维素Hemicellulose (%) | C (%) | N (%) | P (%) | 木质素Lignin (%) | 纤维素Cellulose (%) | C:N | C:P | N:P | Lignin:N |
---|---|---|---|---|---|---|---|---|---|---|
方枝柏 Sabina saltuaria | 8.06 ± 0.09b | 51.64 ± 1.77bc | 0.88 ± 0.01b | 0.12 ± 0.01cd | 14.07 ± 0.74b | 12.22 ± 0.38a | 58.86 ± 2.21b | 416.02 ± 14.04a | 7.08 ± 0.41ab | 16.04 ± 1.01a |
岷江冷杉 Abies faxoniana | 12.86 ± 0.11c | 50.56 ± 2.96b | 0.88 ± 0.01b | 0.11 ± 0.01bc | 15.85 ± 0.36b | 12.19 ± 0.20b | 57.77 ± 3.53b | 443.51 ± 36.69ab | 7.68 ± 0.72b | 18.11 ± 0.42b |
四川红杉 Larix mastersiana | 5.50 ± 0.20a | 54.35 ± 0.63c | 0.86 ± 0.04b | 0.13 ± 0.01d | 27.21 ± 2.21d | 16.45 ± 0.44d | 63.32 ± 3.49b | 407.08 ± 2.42a | 6.44 ± 0.38a | 25.95 ± 1.08c |
红桦 Betula albosinensis | 12.74 ± 0.10c | 49.69 ± 1.45b | 1.33 ± 0.02d | 0.09 ± 0.01a | 36.68 ± 0.62b | 12.47 ± 0.38e | 37.24 ± 1.35a | 544.94 ± 31.72c | 14.63 ± 0.36d | 25.99 ± 0.37c |
高山杜鹃 Rhododendron lapponicum | 8.07 ± 0.31b | 50.29 ± 0.16b | 0.67 ± 0.02a | 0.11 ± 0.01b | 20.81 ± 0.18c | 14.07 ± 0.41c | 75.54 ± 4.47c | 471.14 ± 42.04b | 6.25 ± 0.65a | 31.24 ± 0.69d |
林窗位置 Gap positions | 土壤表层温度特征 Soil surface temperature characteristics | 雪被形成期 Snow formation stage | 雪被覆盖期 Snow cover stage | 雪被融化期 Snow melt stage | 冬季 Winter | 生长季节 Growing season | 全年 The whole year |
---|---|---|---|---|---|---|---|
林窗中心 Gap center | 日均温 DMT (℃) | -3.97 | -3.97 | 2.14 | -1.97 | 9.62 | 4.11 |
正积温 PAT (℃) | 378.47 | 1 004.85 | 1 604.30 | 2 987.62 | 20 713.40 | 23 701.02 | |
负积温 NAT (℃) | -2 296.28 | -4 433.95 | -482.58 | -7 212.81 | -217.40 | -7 430.21 | |
冻融循环 FSFC (times) | 43 | 75 | 54 | 172 | - | 172 | |
林冠林窗 Canopy gap | 日均温 DMT (℃) | -2.90 | -3.25 | 1.13 | -1.77 | 7.81 | 3.43 |
正积温 PAT (℃) | 408.92 | 1 066.50 | 922.70 | 2 398.12 | 17 454.67 | 19 853.79 | |
负积温 NAT (℃) | -1 799.92 | -3 875.67 | -287.33 | -5 962.92 | -98.00 | -6 061.92 | |
冻融循环 FSFC (times) | 56 | 100 | 29 | 185 | - | 185 | |
扩展林窗 Expanded gap | 日均温 DMT (℃) | -3.46 | -4.15 | 1.82 | -2.22 | 7.87 | 3.26 |
正积温 PAT (℃) | 356.75 | 1039.04 | 1 418.50 | 2 814.29 | 17 971.93 | 20 786.22 | |
负积温 NAT (℃) | -2 017.08 | -4 624.67 | -391.25 | -7 033.00 | -140.25 | -7 173.25 | |
冻融循环 FSFC (times) | 50 | 92 | 49 | 191 | - | 191 | |
郁闭林下 Closed canopy | 日均温 DMT (℃) | -3.54 | -3.67 | 1.24 | -2.15 | 7.79 | 3.29 |
正积温 PAT (℃) | 448.50 | 1328.92 | 1 005.50 | 2 782.92 | 17 598.58 | 20 382.50 | |
负积温 NAT (℃) | -2 149.17 | -4 501.00 | -305.08 | -6 955.25 | -61.89 | -7 017.14 | |
冻融循环 FSFC (times) | 59 | 105 | 38 | 201 | - | 201 |
表3 亚高山森林凋落物全年分解不同关键时期林窗不同位置土壤表层温度特征值
Table 3 Characteristics of soil surface temperature at different critical stages of litter decomposition and different positions of forest gap in an subalpine forest
林窗位置 Gap positions | 土壤表层温度特征 Soil surface temperature characteristics | 雪被形成期 Snow formation stage | 雪被覆盖期 Snow cover stage | 雪被融化期 Snow melt stage | 冬季 Winter | 生长季节 Growing season | 全年 The whole year |
---|---|---|---|---|---|---|---|
林窗中心 Gap center | 日均温 DMT (℃) | -3.97 | -3.97 | 2.14 | -1.97 | 9.62 | 4.11 |
正积温 PAT (℃) | 378.47 | 1 004.85 | 1 604.30 | 2 987.62 | 20 713.40 | 23 701.02 | |
负积温 NAT (℃) | -2 296.28 | -4 433.95 | -482.58 | -7 212.81 | -217.40 | -7 430.21 | |
冻融循环 FSFC (times) | 43 | 75 | 54 | 172 | - | 172 | |
林冠林窗 Canopy gap | 日均温 DMT (℃) | -2.90 | -3.25 | 1.13 | -1.77 | 7.81 | 3.43 |
正积温 PAT (℃) | 408.92 | 1 066.50 | 922.70 | 2 398.12 | 17 454.67 | 19 853.79 | |
负积温 NAT (℃) | -1 799.92 | -3 875.67 | -287.33 | -5 962.92 | -98.00 | -6 061.92 | |
冻融循环 FSFC (times) | 56 | 100 | 29 | 185 | - | 185 | |
扩展林窗 Expanded gap | 日均温 DMT (℃) | -3.46 | -4.15 | 1.82 | -2.22 | 7.87 | 3.26 |
正积温 PAT (℃) | 356.75 | 1039.04 | 1 418.50 | 2 814.29 | 17 971.93 | 20 786.22 | |
负积温 NAT (℃) | -2 017.08 | -4 624.67 | -391.25 | -7 033.00 | -140.25 | -7 173.25 | |
冻融循环 FSFC (times) | 50 | 92 | 49 | 191 | - | 191 | |
郁闭林下 Closed canopy | 日均温 DMT (℃) | -3.54 | -3.67 | 1.24 | -2.15 | 7.79 | 3.29 |
正积温 PAT (℃) | 448.50 | 1328.92 | 1 005.50 | 2 782.92 | 17 598.58 | 20 382.50 | |
负积温 NAT (℃) | -2 149.17 | -4 501.00 | -305.08 | -6 955.25 | -61.89 | -7 017.14 | |
冻融循环 FSFC (times) | 59 | 105 | 38 | 201 | - | 201 |
变异来源 Variation source | df | F | p |
---|---|---|---|
T | 3 | 163.580 | 0.000** |
S | 4 | 590.699 | 0.000** |
G | 3 | 13.908 | 0.000** |
T × S | 12 | 74.056 | 0.000** |
T × G | 9 | 32.429 | 0.000** |
S × G | 12 | 19.384 | 0.000** |
T × S × G | 36 | 19.846 | 0.000** |
表4 亚高山森林凋落物全年分解过程中半纤维素损失率与采样时期, 林窗位置和物种的重复测量方差分析
Table 4 Results of repeated measures ANOVA on effects of sampling stage, gap position and specie on litter hemicellulose losses over one-year litter decomposition in an subalpine forest
变异来源 Variation source | df | F | p |
---|---|---|---|
T | 3 | 163.580 | 0.000** |
S | 4 | 590.699 | 0.000** |
G | 3 | 13.908 | 0.000** |
T × S | 12 | 74.056 | 0.000** |
T × G | 9 | 32.429 | 0.000** |
S × G | 12 | 19.384 | 0.000** |
T × S × G | 36 | 19.846 | 0.000** |
影响因子 Factor | 相关性系数 Correlation coefficient | |
---|---|---|
环境因子 Environmental factors | 日均温 Daily mean temperature | -0.246** |
正积温 Positive accumulated temperature | -0.707 | |
负积温 Negative accumulated temperature | -0.147* | |
冻融循环 Frequency of freeze-thaw cycle | 0.211** | |
凋落物质量因子 Litter quality factors | 半纤维素 Hemicellulose | 0.276** |
C | -0.219** | |
N | 0.153* | |
P | -0.241** | |
木质素 Lignin | -0.146* | |
纤维素 Cellulose | 0.068 | |
C:N | -0.165* | |
C:P | 0.202** | |
N:P | 0.197** | |
Lignin:N | -0.074 |
表5 亚高山森林凋落物半纤维素损失率与环境因子和凋落物化学属性的相关性分析
Table 5 Correlations of the litter hemicellulose losses with environmental factors and litter quality factors over one-year litter decomposition in an subalpine forest
影响因子 Factor | 相关性系数 Correlation coefficient | |
---|---|---|
环境因子 Environmental factors | 日均温 Daily mean temperature | -0.246** |
正积温 Positive accumulated temperature | -0.707 | |
负积温 Negative accumulated temperature | -0.147* | |
冻融循环 Frequency of freeze-thaw cycle | 0.211** | |
凋落物质量因子 Litter quality factors | 半纤维素 Hemicellulose | 0.276** |
C | -0.219** | |
N | 0.153* | |
P | -0.241** | |
木质素 Lignin | -0.146* | |
纤维素 Cellulose | 0.068 | |
C:N | -0.165* | |
C:P | 0.202** | |
N:P | 0.197** | |
Lignin:N | -0.074 |
1 | Arunachalam A, Arunachalam K (2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India.Plant and Soil, 223, 187-195. |
2 | Berg B, Hannus K, Popoff T, Theander O (1982). Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest I.Canadian Journal of Botany, 60, 1310-1319. |
3 | Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer-Verlag, Berlin. |
4 | Clein JS, Schimel JP (1995). Microbial activity of tundra and taiga soils at sub-zero temperatures.Soil Biology & Biochemistry, 27, 1231-1234. |
5 | Dai JY, Qin SP, Zhou JM (2004). Dynamic changes of DOM fractions during the decaying process of Metasequoia glyptostrobodies litter.Ecology and Environment, 13, 207-210. (in Chinese with English abstract)[代静玉, 秦淑平, 周江敏 (2004). 水杉凋落物分解过程中溶解性有机质的分组组成变化. 生态环境, 13, 207-210.] |
6 | Deng RJ, Yang WQ, Wu FZ (2009). Effects of seasonal freeze-thaw on the enzyme activities in Abies faxoniana and Betula platyphylla litters.Chinese Journal of Applied Ecology, 20, 1026-1031. (in Chinese with English abstract)[邓仁菊, 杨万勤, 吴福忠 (2009). 季节性冻融对岷江冷杉和白桦凋落物酶活性的影响. 应用生态学报, 20, 1026-1031.] |
7 | Duguid MC, Frey BR, Ellum DS, Kelty M, Ashton MS (2013). The influence of ground disturbance and gap position on understory plant diversity in upland forests of southern New England.Forest Ecology and Management, 303, 148-159. |
8 | He J, Jiang XM, Yang WQ, Ni XY, Xu LY, Li H, Wu FZ (2014a). Effects of snow patches on the release of N and P during foliar litter decomposition in an alpine forest of western Sichuan, China.Chinese Journal of Applied Ecology, 25, 2158-2166. (in Chinese with English abstract)[何洁, 蒋先敏, 杨万勤, 倪祥银, 徐李亚, 李晗, 吴福忠 (2014a). 雪被斑块对川西高山森林凋落叶N和P释放的影响. 应用生态学报, 25, 2158-2166.] |
9 | He J, Yang WQ, Ni XY, Li H, Xu LY, Wu FZ (2014b). Effects of snow patch on the dynamics of potassium and sodium during litter decomposition in winter in a subalpine forest of western Sichuan.Chinese Journal of Plant Ecology, 38, 550-561. (in Chinese with English abstract)[何洁, 杨万勤, 倪祥银, 李晗, 徐李亚, 吴福忠 (2014b). 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响. 植物生态学报, 38, 550-561.] |
10 | He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest.Chinese Journal of Plant Ecology, 37, 306-316.(in Chinese with English abstract) [何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.] |
11 | Konestabo HS, Michelsen A, Holmstrup M (2007). Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem.Applied Soil Ecology, 36, 136-146. |
12 | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Chang CH (2015). Effects of the snow cover on acid-soluble extractive and acid-insoluble residue during foliar litter decomposition in an alpine forest.Acta Ecologica Sinica, 35, 1-15.(in Chinese with English abstract) [李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 常晨晖 (2015). 不同厚度雪被对高山森林6种凋落物分解过程中酸溶性和酸不溶性组分的影响. 生态学报, 35, 1-15. |
17 | Ni XY, Yang WQ, Li H, Xu LY, He J, Tan B, Wu FZ (2014). The responses of early foliar litter humification to reduced snow cover during winter in an alpine forest.Canadian Journal of Soil Science, 94, 453-461. |
18 | Ni XY, Yang WQ, Li H, Xu LY, He J, Wu FZ (2014). Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan.Chinese Journal of Plant Ecology, 38, 540-549.(in Chinese with English abstract) [倪祥银, 杨万勤, 李晗, 徐李亚, 何洁, 吴福忠 (2014). 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 38, 540-549.] |
13 | Liu L, Wu FZ, Yang WQ, Wang A, Tan B, Yu S (2010). Soil bacterial diversity in the subalpine/alpine forests of western Sichuan at the early stage of freeze-thaw season.Acta Ecologica Sinica, 30, 5687-5694.(in Chinese with English abstract) [刘利, 吴福忠, 杨万勤, 王奥, 谭波, 余胜 (2010). 季节性冻结初期川西亚高山/高山森林土壤细菌多样性. 生态学报, 30, 5687-5694.] |
14 | Liu RL, Yang WQ, Wu FZ, Tan B, Wang WJ (2014). Soil fauna community structure and diversity during foliar litter decomposition in the subalpine/alpine forests of western Sichuan.Chinese Journal of Applied and Environmental Biology, 20, 499-507.(in Chinese with English abstract) [刘瑞龙, 杨万勤, 吴福忠, 谭波, 王文君 (2014). 川西亚高山/高山森林凋落物分解过程中土壤动物群落结构及其多样性动态. 应用与环境生物学报, 20, 499-507.] |
19 | Ritter E (2005). Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest.Soil Biology & Biochemistry, 37, 1237-1247. |
20 | Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément JC (2013). The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows.Plant and Soil, 363, 215-229. |
15 | Mallik AU, Kreutzweiser DP, Spalvieri CM (2014). Forest regeneration in gaps seven years after partial harvesting in riparian buffers of boreal mixedwood streams.Forest Ecology and Management, 312, 117-128. |
16 | Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics.Ecology, 63, 621-626. |
21 | Schädel C, Blöchl A, Richter A, Hoch G (2010). Quantification and monosaccharide composition of hemicelluloses from different plant functional types.Plant Physiology & Biochemistry, 48, 1-8. |
22 | van Soest PJ, Robertson JB, Lewis BA (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.Journal of Dairy Science, 74, 3583-3592. |
23 | Varhola A, Coops NC, Bater CW, Teti P, Boon S, Weiler M (2010). The influence of ground- and lidar-derived forest structure metrics on snow accumulation and ablation in disturbed forests.Canadian Journal of Forest Research, 40, 812-821. |
24 | Whitmore TC (1989). Canopy gaps and the two major groups of forest trees.Ecology, 70, 536-538. |
25 | Wu Q, Wu F, Yang, W, Zhao Y, He W, Tan B (2014). Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet Plateau.PLoS ONE, 9, e97112. |
26 | Wu QQ, Wu FZ, Yang WQ, Xu ZF, He W, He M, Zhan YY, Zhu JX (2013). Effect of seasonal snow cover on litter decomposition in alpine forest.Chinese Journal of Plant Ecology, 37, 296-305.(in Chinese with English abstract) [武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄 (2013). 季节性雪被对高山森林凋落物分解的影响. 植物生态学报, 37, 296-305.] |
27 | Xu LY, Yang WQ, Li H, Ni XY, He J, Wu FZ (2014). Effects of forest gap on soluble nitrogen and soluble phosphorus of foliar litter decomposition in an alpine forest.Journal of Soil and Water Conservation, 28, 214-221.(in Chinese with English abstract) [徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠 (2014). 高山森林林窗对凋落物分解过程中水溶性氮和磷的影响. 水土保持学报, 28, 214-221.] |
28 | Yu ZP, Peng H, Lin D, Ruan RS, Hu ZR, Wang N, Liu YH, Zhang JS (2011). The structure characteristic of hemicellulose: A review.Polymer Bulletin, (6), 48-54.(in Chinese with English abstract) [余紫苹, 彭红, 林妲, 阮榕生, 王娜, 胡铮, 刘玉环, 张锦胜 (2011). 植物半纤维素结构研究进展. 高分子通报, (6), 48-54.] |
29 | Zhu JX, He XH, Wu FZ, Yang WQ, Tan B (2012). Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China.Scandinavian Journal of Forest Research, 27, 586-596. |
[1] | Yanwei Guan, Yongru Wu, Zheng Cao, Zhifeng Wu, Fangyuan Yu, Haibin Yu, Tiejun Wang. Island biogeography theory and the habitat heterogeneity jointly explain global patterns of Rhododendron diversity[J]. Plant Diversity, 2024, 46(05): 565-574. |
[2] | Shengchun Li, Tieyao Tu, Shaopeng Li, Xian Yang, Yong Zheng, Liang-Dong Guo, Dianxiang Zhang, Lin Jiang. Different mechanisms underlie similar species-area relationships in two tropical archipelagoes[J]. Plant Diversity, 2024, 46(02): 238-246. |
[3] | Yazhou Zhang, Lishen Qian, Daniel Spalink, Lu Sun, Jianguo Chen, Hang Sun. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation[J]. Plant Diversity, 2021, 43(03): 181-191. |
[4] | Huifu Zhuang, Chen Wang, Yanan Wang, Tao Jin, Rong Huang, Zihong Lin, Yuhua Wang. Native useful vascular plants of China: A checklist and use patterns[J]. Plant Diversity, 2021, 43(02): 134-141. |
[5] | Bin Yang, Min Deng, Ming-Xia Zhang, Aung Zaw Moe, Hong-Bo Ding, Mya Bhone Maw, Pyae Pyae Win, Richard T. Corlett, Yun-Hong Tan. Contributions to the flora of Myanmar from 2000 to 2019[J]. Plant Diversity, 2020, 42(04): 292-301. |
[6] | Wen-Yun Chen, Tao Su. Asian monsoon shaped the pattern of woody dicotyledon richness in humid regions of China[J]. Plant Diversity, 2020, 42(03): 148-154. |
[7] | Christopher P. Dunn. Biological and cultural diversity in the context of botanic garden conservation strategies[J]. Plant Diversity, 2017, 39(06): 396-401. |
[8] | Peter H.RAVEN. Plant Conservation in the Future: New Challenges, New Opportunities[J]. Plant Diversity, 2011, 33(01): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||