1. Rasheed S, Rehman K, Shahid M, et al. Therapeutic potentials of genistein: new insights and perspectives. J Food Biochem. 2022;46(9): e14228. 2. Rahman Mazumder MA, Hongsprabhas P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: a review. Biomed Pharmacother. 2016;82:379–92. 3. Neelakandan C, Chang T, Alexander T, et al. In Vitro evaluation of antioxidant and anti-inflammatory properties of genistein-modified hemodialysis membranes. Biomacromol. 2011;12(7):2447–55. 4. Spagnuolo C, Russo GL, Orhan IE, et al. Genistein and cancer: current status, challenges, and future directions. Adv Nutr. 2015;6(4):408–19. 5. Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: an overview. J Food Biochem. 2021;45(11): e13972. 6. Jain R, Bolch C, Al-Nakkash L, et al. Systematic review of the impact of genistein on diabetes-related outcomes. Am J Physiol-Reg I. 2022;323(3):R279–88. 7. Kim EY, Hong KB, Suh HJ, et al. Protective effects of germinated and fermented soybean extract against tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 cells and in rats. Food Funct. 2015;6(11):3512–21. 8. Thangavel P, Puga-Olguín A, Rodríguez-Landa JF, et al. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules. 2019;24(21):3892–908. 9. Jafari S, Shoghi M, Khazdair MR, et al. Pharmacological effects of genistein on cardiovascular diseases. Evid-Based Compl Alt. 2023;2023:1–16. 10. Ko EA, Park WS, Son YK, et al. The effect of tyrosine kinase inhibitor genistein on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Vasc Pharmacol. 2009;50(1–2):51–6. 11. Kojima T, Uesugi T, Toda T, et al. Hypolipidemic action of the soybean isoflavones genistein and genistin in glomerulonephritic rats. Lipids. 2002;37(3):261–5. 12. Yu L, Rios E, Castro L, et al. Genistein: dual role in women’s health. Nutrients. 2021;13(9):3048–70. 13. Buddhiranon S, Kyu T. Solubilization of genistein in poly (oxyethylene) through eutectic crystal melting. J Phys Chem B. 2012;116(27):7795–802. 14. Polkowski K, Skierski JS, Mazurek AP. Anticancer activity of genistein-piperazine complex. In vitro study with HL-60 cells. Acta Pol Pharm. 2000;57(3):223–31. 15. Daruházi ÁE, Szente L, Balogh B, et al. Utility of cyclodextrins in the formulation of genistein. J Pharmaceut Biomed. 2008;48(3):636–40. 16. Stancanelli R, Mazzaglia A, Tommasini S, et al. The enhancement of isoflavones water solubility by complexation with modified cyclodextrins: a spectroscopic investigation with implications in the pharmaceutical analysis. J Pharmaceut Biomed. 2007;44(4):980–4. 17. Zhang W, Li X, Ye T, et al. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology. Int J Pharmaceut. 2013;454(1):354–66. 18. Aditya NP, Shim M, Lee I, et al. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. J Agr Food Chem. 2013;61(8):1878–83. 19. Jaiswal N, Akhtar J, Singh SP, et al. An overview on genistein and its various formulations. Drug Res. 2018;69(06):305–13. 20. Wang Z, Xie Y, Yu M, et al. Recent advances on the biological study of pharmaceutical cocrystals. AAPS PharmSciTech. 2022;23(8):303. 21. Guo M, Sun X, Chen J, et al. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537–64. 22. Emami S, Siahi-Shadbad M, Adibkia K, et al. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts. 2018;8(4):305–20. 23. Panzade PS, Shendarkar GR. Pharmaceutical cocrystal: a game changing approach for the administration of old drugs in new crystalline form. Drug Dev Ind Pharm. 2020;46(10):1559–68. 24. Dai XL, Yao J, Wu C, et al. Solubility and permeability improvement of allopurinol by cocrystallization. Cryst Growth Des. 2020;20(8):5160–8. 25. Wang JR, Wang X, Yang Y, et al. Solid-state characterization of 17β-estradiol co-crystals presenting improved dissolution and bioavailability. CrystEngComm. 2016;18(19):3498–505. 26. Chatziadi A, Skorepova E, Jirat J, et al. Characterization and insights into the formation of new multicomponent solid forms of sofosbuvir. Cryst Growth Des. 2022;22(5):3395–404. 27. Yan Y, Dai XL, Jia JL, et al. Crystal structures, stability, and solubility evaluation of two polymorphs of a 2:1 melatonin-piperazine cocrystal. Cryst Growth Des. 2019;20(2):1079–87. 28. He H, Huang Y, Zhang Q, et al. Zwitterionic cocrystals of flavonoids and proline: solid-state characterization, pharmaceutical properties, and pharmacokinetic performance. Cryst Growth Des. 2016;16(4):2348–56. 29. Sowa M, Ślepokura K, Matczak-Jon E. Cocrystals of fisetin, luteolin and genistein with pyridinecarboxamide coformers: crystal structures, analysis of intermolecular interactions, spectral and thermal characterization. CrystEngComm. 2013;15(38):7696–708. 30. Sowa M, Ślepokura K, Matczak-Jon E. A 1:2 cocrystal of genistein with isonicotinamide: crystal structure and Hirshfeld surface analysis. Acta Crystallogr C. 2013;69(11):1267–72. 31. Sowa M, Ślepokura K, Matczak-Jon E. Solid-state characterization and solubility of a genistein–caffeine cocrystal. J Mol Struct. 2014;1076:80–8. 32. Zhang Y, Zhu B, Ji WJ, et al. Insight into the formation of cocrystals of flavonoids and 4,4'-vinylenedipyridine: heteromolecular hydrogen bonds, molar ratio, and structural analysis. Cryst Growth Des. 2021;21(5):2720–33. 33. Zhang YN, Yin HM, Zhang Y, et al. Preparation of a 1:1 cocrystal of genistein with 4,4'-bipyridine. J Cryst Growth. 2017;458:103–9. 34. Li X, Liu X, Song J, et al. Drug–drug cocrystallization simultaneously improves pharmaceutical properties of genistein and ligustrazine. Cryst Growth Des. 2021;21(6):3461–8. 35. Wu B, Kulkarni K, Basu S, et al. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci. 2011;100(9):3655–81. 36. Tang L, Feng Q, Zhao J, et al. Involvement of UDP-glucuronosyltranferases and sulfotransferases in the liver and intestinal first-pass metabolism of seven flavones in C57 mice and humans in vitro. Food Chem Toxicol. 2012;50(5):1460–7. 37. McClain RM, Wolz E, Davidovich A, et al. Acute, subchronic and chronic safety studies with genistein in rats. Food Chem Toxicol. 2006;44(1):56–80. 38. Ullmann U, Metzner J, Frank T, et al. Safety, tolerability, and pharmacokinetics of single ascending doses of synthetic genistein (BonisteinTM) in healthy volunteers. Adv Ther. 2005;22:65–78. 39. Frisch M, Trucks G, Schlegel H, et al. Gaussian 16. Wallingford: Gaussian. Inc.; 2016. 40. Yang D, Cao J, Heng T, et al. Theoretical calculation and structural analysis of the cocrystals of three flavonols with praziquantel. Cryst Growth Des. 2021;21(4):2292–300. 41. Nguyen ALP, Izgorodina EI. Behavior of counterpoise correction in many-body molecular clusters of organic compounds: Hartree-Fock interaction energy perspective. J Comput Chem. 2022;43(8):568–76. 42. Lu T, Chen Q. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J Comput Chem. 2022;43(8):539–55. 43. Spackman PR, Turner MJ, McKinnon JJ, et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021;54(3):1006–11. |