Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (3): 29-29.DOI: 10.1007/s13659-025-00508-9
• ORIGINAL ARTICLES • Previous Articles Next Articles
Qiang Yin1, Jianying Han1,2,3, Guixiang Yang1, Zhijun Song4, Keke Zou1, Kangjie Lv1, Zexu Lin1, Lei Ma1, Miaomiao Liu2, Yunjiang Feng2, Ronald J. Quinn2, Tom Hsiang5, Lixin Zhang1, Xueting Liu1, Guoliang Zhu1, Jingyu Zhang1
Received:
2025-01-13
Accepted:
2025-03-27
Online:
2025-06-18
Published:
2025-06-24
Supported by:
Qiang Yin1, Jianying Han1,2,3, Guixiang Yang1, Zhijun Song4, Keke Zou1, Kangjie Lv1, Zexu Lin1, Lei Ma1, Miaomiao Liu2, Yunjiang Feng2, Ronald J. Quinn2, Tom Hsiang5, Lixin Zhang1, Xueting Liu1, Guoliang Zhu1, Jingyu Zhang1
通讯作者:
Guoliang Zhu Email:E-mail:zhuguoliang@ecust.edu.cn;Jingyu Zhang Email:E-mail:zhangjingyu@ecust.edu.cn
基金资助:
Qiang Yin, Jianying Han, Guixiang Yang, Zhijun Song, Keke Zou, Kangjie Lv, Zexu Lin, Lei Ma, Miaomiao Liu, Yunjiang Feng, Ronald J. Quinn, Tom Hsiang, Lixin Zhang, Xueting Liu, Guoliang Zhu, Jingyu Zhang. New sesquiterpenoids with anti-inflammatory effects from phytopathogenic fungus Bipolaris sorokiniana 11134[J]. Natural Products and Bioprospecting, 2025, 15(3): 29-29.
Qiang Yin, Jianying Han, Guixiang Yang, Zhijun Song, Keke Zou, Kangjie Lv, Zexu Lin, Lei Ma, Miaomiao Liu, Yunjiang Feng, Ronald J. Quinn, Tom Hsiang, Lixin Zhang, Xueting Liu, Guoliang Zhu, Jingyu Zhang. New sesquiterpenoids with anti-inflammatory effects from phytopathogenic fungus Bipolaris sorokiniana 11134[J]. 应用天然产物, 2025, 15(3): 29-29.
1. Berenbaum F. Proinflammatory cytokines, prostaglandins, and the chondrocyte: mechanisms of intracellular activation. Joint Bone Spine. 2000;67(6):561-4. https://doi.org/10.1016/S1297-319X(00)00212-8. 2. Reddy DB, Reddanna P. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Biochem Biophys Res Commun. 2009;381(1):112-7. https://doi.org/10.1016/j.bbrc.2009.02.022. 3. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer’s disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009;87(3):181-94. https://doi.org/10.1016/j.pneurobio.2009.01.001. 4. Shah IM, Macrae IM, Di Napoli M. Neuroinflammation and neuroprotective strategies in acute ischaemic stroke—from bench to bedside. Curr Mol Med. 2009;9(3):336-54. https://doi.org/10.2174/156652409787847236. 5. J B. Dictionary of natural products on CD-ROM. Version 101; 2002. 6. Hana B, Veronika H, Lenka S, Martin A, Iva B. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr Top Med Chem. 2014;14(22):2478-94. https://doi.org/10.2174/1568026614666141203120833. 7. Jesus Duran-Pena M, Botubol Ares JM, Hanson JR, Collado IG, Hernandez-Galan R. Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Nat Prod Rep. 2015;32(8):1236-48. https://doi.org/10.1039/c5np00024f. 8. Elissawy AM, El-Shazly M, Ebada SS, Singab AB, Proksch P. Bioactive terpenes from marine-derived fungi. Mar Drugs. 2015;13(4):1966-92. https://doi.org/10.3390/md13041966. 9. Gliszczynska A, Brodelius PE. Sesquiterpene coumarins. Phytochem Rev. 2012;11(1):77-96. https://doi.org/10.1007/s11101-011-9220-6. 10. Orofino Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, Dherde K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs. 2012;23(9):883-96. https://doi.org/10.1097/CAD.0b013e328356cad9. 11. Spivey AC, Weston M, Woodhead S. Celastraceae sesquiterpenoids: biological activity and synthesis. Chem Soc Rev. 2002;31(1):43-59. https://doi.org/10.1039/b000678p. 12. Tanasova M, Sturla SJ. Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev. 2012;112(6):3578-610. https://doi.org/10.1021/cr2001367. 13. Yang X-L, Zhang J-Z, Luo D-Q. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat Prod Rep. 2012;29(6):622-41. https://doi.org/10.1039/c2np00073c. 14. Abraham WR. Bioactive sesquiterpenes produced by fungi: are they useful for humans as well? Curr Med Chem. 2001;8(6):583-606. https://doi.org/10.2174/0929867013373147. 15. Kramer R, Abraham W-R. Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev. 2012;11(1):15-37. https://doi.org/10.1007/s11101-011-9216-2. 16. Quinn RA, Nothias L-F, Vining O, Meehan M, Esquenazi E, Dorrestein PC. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci. 2017;38(2):143-54. https://doi.org/10.1016/j.tips.2016.10.011. 17. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828-37. https://doi.org/10.1038/nbt.3597. 18. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA. 2012;109(26):E1743-52. https://doi.org/10.1073/pnas.1203689109. 19. Nothias L-F, Petras D, Schmid R, Duehrkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17(9):905. https://doi.org/10.1038/s41592-020-0933-6. 20. Mayo PD, Spencer EY, White RW. Helminthosporal, the toxin from Helminthosporium sativum. I. Isolation and characterization. Can J Chem. 1961;39(8):1608-12. https://doi.org/10.1139/v61-205. 21. Gayed SK. Production of symptoms of barley leaf-spot disease by culture filtrate of Helminthosporium satirum. Nature. 1961;191(4789):725-6. https://doi.org/10.1038/191725b0. 22. Ludwig RA. Toxin production by Helminthosporium sativum P.K & B. and its significance in disease development. Can J Bot. 1957;35(3):291-303. https://doi.org/10.1139/b57-026. 23. Han J, Zhang J, Song Z, Liu M, Hu J, Hou C, et al. Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl Microbiol Biotechnol. 2019;103(13):5167-81. https://doi.org/10.1007/s00253-019-09821-z. 24. Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu S, et al. The conserved domain database in 2023. Nucleic Acids Res. 2023;51(D1):D384-8. https://doi.org/10.1093/nar/gkac1096. 25. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023;51(W1):W46-50. https://doi.org/10.1093/nar/gkad344. 26. Huaran Z, Haiyan Z, Yuqi H, Yi Z. Genome mining reveals the biosynthesis of sativene and its oxidative conversion to seco-sativene. Org Lett. 2024;26(1):338-43. https://doi.org/10.1021/acs.orglett.3c04005. 27. Abdel-Lateff A, Okino T, Alarif WM, Al-Lihaibi SS. Sesquiterpenes from the marine algicolous fungus Drechslera sp. J Saudi Chem Soc. 2013;17(2):161-5. https://doi.org/10.1016/j.jscs.2011.03.002. 28. Fan Y-Z, Tian C, Tong S-Y, Liu Q, Xu F, Shi B-B, et al. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines. Nat Prod Bioprospect. 2023;13(1):43. https://doi.org/10.1007/s13659-023-00407-x. 29. Osterhage C, König GM, Höller U, Wright AD. Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod. 2002;65(3):306-13. https://doi.org/10.1021/np010092l. 30. Li Z-H, Ai H-L, Yang M-S, He J, Feng T. Bioactive sativene sesquiterpenoids from cultures of the endophytic fungus Bipolaris eleusines. Phytochem Lett. 2018;27:87-9. https://doi.org/10.1016/j.phytol.2018.07.007. 31. Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 2015;80(24):12526-34. https://doi.org/10.1021/acs.joc.5b02396. 32. Zhang L, Liu X, Zhang J, Jiang L, Zhu G, Han J, et al. Preparation method of helminthosporol type sesquiterpenoids and its preparation method thereof. ZL201910566725X; 2019. 33. Tamura S, Sakurai A. Syntheses of several compounds related to helminthosporol and their plant growth-regulating activities. Agric Biol Chem. 2014;28(5):337-8. https://doi.org/10.1080/00021369.1964.10858247. 34. Nakajima H, Isomi K, Hamasaki T, Ichinoe M. Sorokinianin—a novel phytotoxin produced by the phytopathogenic fungus Bipolaris-sorokiniana. Tetrahedron Lett. 1994;35(51):9597-600. https://doi.org/10.1016/0040-4039(94)88520-6. 35. Lodewyk MW, Gutta P, Tantillo DJ. Computational studies on biosynthetic carbocation rearrangements leading to sativene, cyclosativene, α-ylangene, and β-ylangene. J Org Chem. 2008;73(17):6570-9. https://doi.org/10.1021/jo800868r. 36. Phan C-S, Li H, Kessler S, Solomon PS, Piggott AM, Chooi Y-H. Bipolenins K-N: New sesquiterpenoids from the fungal plant pathogen Bipolaris sorokiniana. Beilstein J Org Chem. 2019;15:2020-8. https://doi.org/10.3762/bjoc.15.198. 37. Nakajima H, Toratsu Y, Fujii Y, Ichinoe M, Hamasaki T. Biosynthesis of sorokinianin a phytotoxin of Bipolaris sorokiniana: evidence of mixed origin from the sesquiterpene and TCA pathways. Tetrahedron Lett. 1998;39(9):1013-6. https://doi.org/10.1016/S0040-4039(97)10803-6. 38. Steele CL, Crock J, Bohlmann J, Croteau R. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem. 1998;273(4):2078-89. https://doi.org/10.1074/jbc.273.4.2078. 39. Elisashvili V. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms. 2012;14(3):211-39. https://doi.org/10.1615/IntJMedMushr.v14.i3.10. 40. Ulrike L, Niedermeyer THJ, Wolf-Dieter J. The pharmacological potential of mushrooms. Evid Based Complement Altern Med. 2005;2(3):285-99. https://doi.org/10.1093/ecam/neh107. 41. Li Y-Y, Tan X-M, Yang J, Guo L-P, Ding G. Naturally occurring seco-sativene sesquiterpenoid: chemistry and biology. J Agric Food Chem. 2020;68(37):9827-38. https://doi.org/10.1021/acs.jafc.0c04560. 42. Jiang L, Zhang X, Sato Y, Zhu G, Minami A, Zhang W, et al. Genome-based discovery of enantiomeric pentacyclic sesterterpenes catalyzed by fungal bifunctional terpene synthases. Org Lett. 2021;23(12):4645-50. https://doi.org/10.1021/acs.orglett.1c01361. 43. Jiang L, Zhu G, Han J, Hou C, Zhang X, Wang Z, et al. Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. Appl Microbiol Biotechnol. 2021;105(13):5407-17. https://doi.org/10.1007/s00253-021-11192-3. 44. Ruggeri FM, Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, et al. Gaussian 03, Revision E01; 2004. 45. Cammi R, Tomasi J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem. 1995;16(12):1449-58. https://doi.org/10.1002/jcc.540161202. 46. Yang G-X, Ge S-L, Wu Y, Huang J, Li S-L, Wang R, et al. Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem. 2018;156:206-15. https://doi.org/10.1016/j.ejmech.2018.04.054. |
[1] | Hongyan Wen, Sheng Li, Yu Zhang. Phthalide mono- and dimers from the rhizomes of Angelica sinensis and their anti-inflammatory activities [J]. Natural Products and Bioprospecting, 2025, 15(3): 26-26. |
[2] | Lu Cao, Jun-Feng Tan, Zeng-Guang Zhang, Jun-Wei Yang, Yu Mu, Zhi-Long Zhao, Yi Jiang, Xue-Shi Huang, Li Han. Discovery of structurally diverse sesquiterpenoids from Streptomyces fulvorobeus isolated from Elephas maximus feces and their antifungal activities [J]. Natural Products and Bioprospecting, 2024, 14(6): 61-61. |
[3] | Yuru Shi, Xiaoqian Zhang, Shengji Pei, Yuhua Wang. Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway [J]. Natural Products and Bioprospecting, 2024, 14(5): 36-36. |
[4] | Shi-Yan Feng, Na Jiang, Jia-Ying Yang, Lin-Yao Yang, Jiang-Chao Du, Xuan-Qin Chen, Dan Liu, Rong-Tao Li, Jin-Dong Zhong. Antiviral and anti-inflammatory activities of chemical constituents from twigs of Mosla chinensis Maxim [J]. Natural Products and Bioprospecting, 2024, 14(3): 26-26. |
[5] | Jin-Ning Chu, Premanand Krishnan, Kuan-Hon Lim. A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra [J]. Natural Products and Bioprospecting, 2023, 13(6): 53-53. |
[6] | Orawan Jongsomjainuk, Jutatip Boonsombat, Sanit Thongnest, Hunsa Prawat, Paratchata Batsomboon, Sitthivut Charoensutthivarakul, Saroj Ruchisansakun, Kittipong Chainok, Jitnapa Sirirak, Chulabhorn Mahidol, Somsak Ruchirawat. Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis [J]. Natural Products and Bioprospecting, 2023, 13(6): 55-55. |
[7] | Yang Yu, Yang Wang, Gui-Chun Wang, Cheng-Yong Tan, Yi Wang, Jin-Song Liu, Guo-Kai Wang. Andropanilides A-C, the novel labdane-type diterpenoids from Andrographis paniculata and their anti-inflammation activity [J]. Natural Products and Bioprospecting, 2023, 13(5): 31-31. |
[8] | Xun Wei, Jia-Luo Huang, Hua-Hua Gao, Fang-Yu Yuan, Gui-Hua Tang, Sheng Yin. New halimane and clerodane diterpenoids from Croton cnidophyllus [J]. Natural Products and Bioprospecting, 2023, 13(3): 21-21. |
[9] | Cheng-Yong Tan, Bao-Bao Shi, Mei-Fen Bao, Xiang-Hai Cai. Anti-inflammatory maistemonine-class alkaloids of Stemona japonica [J]. Natural Products and Bioprospecting, 2023, 13(2): 8-8. |
[10] | Sitian Zhang, Shuyuan Mo, Fengli Li, Yaxin Zhang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05 [J]. Natural Products and Bioprospecting, 2022, 12(4): 27-27. |
[11] | Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha [J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16. |
[12] | Shui-Mei Zhang, Kun Hu, Xiao-Nian Li, Han-Dong Sun, Pema-Tenzin Puno. Lignans and sesquiterpenoids from the stems of Schisandra bicolor var. tuberculata [J]. Natural Products and Bioprospecting, 2022, 12(3): 19-19. |
[13] | Lu Zhang, Ping Yi, Hui Yan, Xiao-Nian Li, Meng-Yuan Xia, Jun Yang, Ji-Feng Luo, Yue-Qiu He, Yue-Hu Wang. Five new 2-(2-phenylethyl)chromone derivatives and three new sesquiterpenoids from the heartwood of Aquilaria sinensis, an aromatic medicine in China [J]. Natural Products and Bioprospecting, 2022, 12(1): 1-14. |
[14] | Yue-Hu Wang. Traditional Uses and Pharmacologically Active Constituents of Dendrobium Plants for Dermatological Disorders: A Review [J]. Natural Products and Bioprospecting, 2021, 11(5): 465-487. |
[15] | Shu-Ya Wei, Dong-Bao Hu, Meng-Yuan Xia, Ji-Feng Luo, Hui Yan, Jing-Hua Yang, Yun-Song Wang, Yue-Hu Wang. Sesquiterpenoids and 2-(2-Phenylethyl) chromone Derivatives from the Resinous Heartwood of Aquilaria sinensis [J]. Natural Products and Bioprospecting, 2021, 11(5): 545-555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||