1 |
Buksnowitz C, Teischinger A, Muller U, Pahler A, Evans R. Resonance wood (Picea abies (L.) Karst.)—evaluation and prediction of violin makers’ quality-grading. J Acoust Soc Am, 2007, 121: 2384-2395,
DOI
|
2 |
Cho CL. Comparison of three methods for determining Young’s modulus of wood. Taiwan Lin Ye Ke Xue, 2007, 22(3): 297-306,
DOI
|
3 |
Damodaran A, Lessard L, Babu AS. An overview of fibre-reinforced composites for musical instrument soundboards. Acoust Aust, 2015, 43: 117-122,
DOI
|
4 |
Duerinck T, Verberkmoes G, Fritz C, Leman M, Nijs L, Kersemans M, Van Paepegem W. Listener evaluations of violins made from composites. J Acoust Soc Am, 2020, 147: 2647-2655,
DOI
|
5 |
Islam MZ, Sarker ME, Rahman MM, Islam MR, Ahmed ATMF, Mahmud MS, Syduzzaman M. Green composites from natural fibers and biopolymers: A review on processing, properties, and applications. J Reinf Plast Compos, 2022, 41(13–14): 526-557,
DOI
|
6 |
Jiang YQ, Sun XH, Liang XJ, Li ZJ, Li W. Analysis of Chinese musical instrument timbre based on objective features. Fu Dan Xue Bao Zi Ran Ke Xue Ban, 2020, 59: 346, in Chinese
DOI
|
7 |
Karami E, Bardet S, Matsuo M, Bremaud I, Gaff M, Gril J. Effects of mild hygrothermal treatment on the physical and vibrational properties of spruce wood. Compos Struct, 2020, 253: 112736,
DOI
|
8 |
Kubojima Y, Okano T, Ohta M. Vibrational properties of Sitka spruce heat-treated in nitrogen gas. J Wood Sci, 1998, 44: 73-77,
DOI
|
9 |
Kubojima Y, Yoshihara H, Ohsaki H, Ohta M. Accuracy of shear properties of wood obtained by simplified Iosipescu shear test. J Wood Sci, 2000, 46: 279-283,
DOI
|
10 |
Leite ERS, Hein PRG, Souza TM, Rabelo GF. Estimation of the dynamic elastic properties of wood from Copaifera langsdorffii Desf using resonance analysis. Cerne, 2012, 18: 41-47,
DOI
|
11 |
Liu FXZ, Wang KQ, Lang CH, Guan FW, Jiang JH, Qiu YP. Mechanical and acoustic emission properties of vegetable fiber-reinforced epoxy composites for percussion instrument drums. Polym Compos, 2021, 42: 2864-2871,
DOI
|
12 |
Lu JX, Jiang JL, Wu YQ, Li XJ, Cai ZY. Effect of moisture sorption state on vibrational properties of wood. For Prod J, 2012, 62(3): 171-176,
DOI
|
13 |
Matsunaga M, Sugiyama M, Minato K, Norimoto M. Physical and mechanical properties required for violin bow materials. Holzforschung, 1996, 50(6): 511-517,
DOI
|
14 |
Murata K, Kanazawa T. Determination of Young’s modulus and shear modulus by means of deflection curves for wood beams obtained in static bending tests. Holzforschung, 2007, 61(5): 589-594,
DOI
|
15 |
Noguchi T, Obataya E, Ando K. Effects of aging on the vibrational properties of wood. J Cult Herit, 2012, 13(3): S21-S25,
DOI
|
16 |
Ono T, Norimoto M. Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn J Appl Phys, 1983, 22(4R): 611,
DOI
|
17 |
Ono T, Norimoto M. Anisotropy of dynamic Young’s modulus and internal friction in wood. Jpn J Appl Phys, 1985, 24(8R): 960,
DOI
|
18 |
Shirmohammadi M, Faircloth A, Redman A. Determining acoustic and mechanical properties of Australian native hardwood species for guitar fretboard production. Holz Roh Werkst, 2020, 78: 1161-1171,
DOI
|
19 |
Traore B, Brancheriau L, Perre P, Stevanovic T, Diouf P. Acoustic quality of vene wood (Pterocarpus erinaceus Poir.) for xylophone instrument manufacture in Mali. Ann for Sci, 2010,
DOI
|
20 |
Yang Y, Liu YX, Liu ZB, Shi SQ. Prediction of Yueqin acoustic quality based on soundboard vibration performance using support vector machine. J Wood Sci, 2017, 63: 37-44,
DOI
|
21 |
Zhu XC. Research on short-term power load forecasting method based on IFOA-GRNN. Power Syst Prot Control, 2020, 48: 121-127, in Chinese
DOI
|