1 |
Alberdi I, Sandoval V, Condes S, Cañellas I, Vallejo R. El Inventario Forestal Nacional español, una herramienta para el conocimiento, la gestión y la conservación de los ecosistemas forestales arbolados. Ecosistemas, 2016, 25(3): 88-97,
DOI
|
2 |
Bettinger P, Graetz D, Boston K, Sessions J, Chung W. Eight heuristic planning techniques applied to three increasingly difficult wildlife planning problems. Silva Fennica, 2002, 36(2): 561-584,
DOI
|
3 |
Blázquez-Casado Á, González-Olabarria JR, Martín-Alcón S, Just A, Cabré M, Coll L. Assessing post-storm forest dynamics in the Pyrenees using high-resolution LIDAR data and aerial photographs. J Mt Sci, 2015, 12: 841-853,
DOI
|
4 |
Bonet JA, Palahí M, Colinas C, Pukkala T, Fischer C, Miina J, Martinez de Aragón J. Modelling the production of wild mushrooms in pine forests in the Central Pyrenees in northeastern Spain. Can J for Res, 2010, 40: 347-356,
DOI
|
5 |
Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32,
DOI
|
6 |
Chirici G, Barbati A, Corona P, Marchetti M, Travaglini D, Maselli F, Bertini R. Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems. Remote Sens Environ, 2008, 112(5): 2686-2700,
DOI
|
7 |
Crookston NL, Finley A (2008) yaImpute: an R Package for kNN imputation. J Stat Softw 23(10). Available on http://www.jstatsoft.org/
|
8 |
Díaz-Yáñez O, Pukkala T, Packalen P, Peltola H. Multifunctional comparison of different management strategies in boreal forests. Forestry, 2020, 93(1): 84-95,
DOI
|
9 |
|
10 |
Gittins R. Canonical analysis: a review with applications in ecology, 1985 Berlin. p Springer-Verlag 351,
DOI
|
11 |
Hudak AT, Crookston NL, Evans JS, Hall DE, Falkowski MJ. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens Environ, 2008, 112(5): 2232-2245,
DOI
|
12 |
Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens, 2008, 29(5): 1339-1366,
DOI
|
13 |
Jia W, Sun Y, Pukkala T, Jin X. Improved cellular automaton for stand delineation. Forests, 2020, 11(1): 37,
DOI
|
14 |
Jin X, Pukkala T, Li F. Fine-tuning heuristic methods for combinatorial optimization in forest planning. Eur J Forest Res, 2016, 135: 765-779,
DOI
|
15 |
Jin X, Pukkala T, Li F. Meta optimization of stand management with population-based methods. Can J for Res, 2018, 48: 697-708,
DOI
|
16 |
Latifi H, Nothdurft A, Koch B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry, 2010, 83(4): 395-407,
DOI
|
17 |
LeMay V, Temesgen H. Comparison of nearest neighbor methods for estimating basal area and stems per hectare using aerial auxiliary variables. Forest Sci, 2005, 51(2): 109-119,
DOI
|
18 |
Lim K, Treitz P, Wulder M, St-Onge B, Flood M. LiDAR remote sensing of forest structure. Prog Phys Geogr Earth Environ, 2003, 27(1): 88-106,
DOI
|
19 |
Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J. Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data. Can J For Res, 2006, 36: 426-436,
DOI
|
20 |
Martín-Alcón S, Coll L, De Cáceres M, Guitart L, Cabré M, Just A, González-Olabarria JR. Combining aerial LiDAR and multispectral imagery to assess post-fire regeneration types in a Mediterranean forest. Can J For Res, 2015, 45(7): 56866,
DOI
|
21 |
Moeur M, Stage AR. Most similar neighbor: an improved sampling inference procedure for natural resource planning. Forest Sci, 1995, 41(2): 337-359,
DOI
|
22 |
Packalen P, Temesgen H, Maltamo M. Variable selection strategies for nearest neighbor imputation methods used in remote sensing based forest inventory. Can J Remote Sens, 2012, 38(5): 557-569,
DOI
|
23 |
Palahí M, Mavsar R, Gracia C, Birot Y. Mediterranean forests under focus. Int Forest Rev, 2008, 10(4): 676-688,
DOI
|
24 |
Pukkala T. Population-based methods in the optimization of stand management. Silva Fennica, 2009, 43(2): 261-274,
DOI
|
25 |
Pukkala T. Using ALS raster data in forest planning. J Forest Res, 2019, 30: 1581-1593,
DOI
|
26 |
Pukkala T. Delineating forest stands from grid data. Forest Ecosyst, 2020, 7: 1-14,
DOI
|
27 |
Pukkala T, Heinonen T. Optimizing heuristic search in forest planning. Nonlinear Anal Real World Appl, 2006, 7(5): 1284-1297,
DOI
|
28 |
Rouget M, Richardson DM, Lavorel S, Vayreda J, Gracia C, Milton SJ. Determinants of distribution of six Pinus species in Catalonia. Spain J Veg Sci, 2001, 12(4): 491-502,
DOI
|
29 |
Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K. Forests of Mediterranean region: gaps in knowledge and research needs. For Ecol Manage, 2000, 132: 97-109,
DOI
|
30 |
Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim, 1997, 11: 341-359,
DOI
|
31 |
Terrasolid version 017 (2017) – The standard workflow for airborne LiDAR classification. Available on: https://terrasolid.com/. Accessed on 17 May 2023
|
32 |
Trasobares A, Mola-Yudego B, Aquilué N, González-Olabarria JR, Garcia-Gonzalo J, García-Valdés R, De Cáceres M. Nationwide climate-sensitive models for stand dynamics and forest scenario simulation. For Ecol Manage, 2022, 505,
DOI
|
33 |
Vilà-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172. https://www.jstor.org/stable/23022987
|
34 |
White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M (2013) A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Canadian Forest Service Canadian Wood Fibre Centre Information Report FI-X-010
|