1 |
Balasso M, Hunt M, Jacobs A, O’Reilly-Wapstra J. Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. For Ecol Manag, 2021, 491,
DOI
|
2 |
Borrega M, Gibson LJ. Mechanics of Balsa (Ochroma pyramidale) wood. Mech Mater, 2015, 84: 75-90,
DOI
|
3 |
Cave ID. Theory of X-ray measurement of microfibril angle in wood. Wood Sci Technol, 1997, 31(4): 225-234,
DOI
|
4 |
Cotterill PP, Dean CA. Successful tree breeding with index selection, 1990 Victoria CSIRO Division of Forestry and Forest Products
|
5 |
de Lima Costa SE, do Santos RC, Vidaurre GB, Castro RVO, Rocha SMG, Carneiro RL, Campoe OC, de Sousa Santos CP, Gomes IRF, de OliveiraCarvalho NF, Trugilho PF. The effects of contrasting environments on the basic density and mean annual increment of wood from eucalyptus clones. For Ecol Manag, 2020, 458: 117807,
DOI
|
6 |
Défossez P (2015) Tree resistance to wind: the effects of soil conditions on tree stability. CFM 2015–22ème Congrès Français de Mécanique, August 24–28. AFM, Maison de la Mécanique, Lyon, France, pp 22–24
|
7 |
Denis M, Favreau B, Ueno S, Camus-Kulandaivelu L, Chaix G, Gion JM, Nourrisier-Mountou S, Polidori J, Bouvet JM. Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla. Tree Genet Genomes, 2013, 9(4): 927-942,
DOI
|
8 |
Eldridge K, Davidson J, Harwood C, Wyk GV (1994) Selection and breeding. In: eucalypt domestication and breeding. Oxford University PressOxford, pp 199–210
|
9 |
Gardiner B, Byrne K, Hale S, Kamimura K, Mitchell SJ, Peltola H, Ruel JC. A review of mechanistic modelling of wind damage risk to forests. Forestry (lond), 2008, 81(3): 447-463,
DOI
|
10 |
GB/T 1933–2009 (2009) Method for determination of the density of wood Standardization Administration of China Beijing (in Chinese)
|
11 |
Guan LH, Pan HX, Huang MR, Shi JS. Research on growth and wood properties joint genetic improvement of new clones of Poplus deltoids (I-69) × P. euramericana (I-45). J Nanjing for Univ, 2005, 29(2): 6-10,
DOI
|
12 |
Hein PRG, Bouvet JM, Mandrou E, Vigneron P, Clair B, Chaix G. Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S.T. Blake wood. Ann for Sci, 2012, 69(6): 681-691,
DOI
|
13 |
Hirao T, Murakami M, Oguma H. Functional spatial scale of community composition change in response to windthrow disturbance in a deciduous temperate forest. Ecol Res, 2008, 23(2): 249-258,
DOI
|
14 |
Hu XF, Wu F, Sun XB, Chen HP, Yin AZ, Ji KS. Joint analysis of growth and wood property of 38-year-old Pinus massoniana from 55 provenances. J Nanjing for Univ Nat Sci Ed, 2022, 46(3): 203-212,
DOI
|
15 |
Huang SW, Xie WH. Practical SAS programming and forestry trial data analysis, 2001 Guangzhou South China Agricultural University Press (in Chinese)
|
16 |
Huang SX, Shi JS, Li L, Yang LW, Yang LG, Yu RZ, Chen XC, Weng YZ, Zheng RH (2005) Selection of superior clones of Chinese fir for fibre wood. J Nanjing For Univ 29(5):21–24 (in Chinese)
|
17 |
Imbert D, Portecop J. Hurricane disturbance and forest resilience: assessing structural versus functional changes in a Caribbean dry forest. For Ecol Manag, 2008, 255(8–9): 3494-3501,
DOI
|
18 |
Jactel H, Nicoll B, Branco M, González-Olabarria JR, Grodzki W, Långström B, Moreira F, Netherer S, Orazio C, Piou D, Santos H, Schelhaas M, Tojic K, Vodde F. The influences of forest stand management on biotic and abiotic risks of damage. Ann for Sci, 2009, 66: 701,
DOI
|
19 |
Jelonek T, Jakubowski M, Tomczak A. The effect of wind exposure on selected stability parameters of Scots pine stands. Ann Warsaw Univ Life Sci SGGW for Wood Technol, 2011, 74: 143-149
|
20 |
Jiang XB, Song YP, Ma KF, Li B, An XM, Zhang ZY. Genetic variation of growth traits and photosynthetic physiology of Populus hybrid clones. Acta Bot Boreali Occidentalia Sin, 2011, 31(9): 1779-1785,
DOI
|
21 |
Laurance WF, Curran TJ. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol, 2008, 33(4): 399-408,
DOI
|
22 |
Li GY, Xu JM, Lu ZH, Yang WD, Yang GQ, Zhong LS. Studies on index selections of Eucalyptus urophylla families. For Res, 2005, 18(1): 57-61,
DOI
|
23 |
Li YX, Zhang HG, Zhang L, Zhu HY, Zhou XC. Research on multi-trait selection of the superior families of Larix olgensis pulpwood. For Res, 2012, 25(6): 712-718,
DOI
|
24 |
Li CR, Chen JB, Guo DQ, Weng QJ, Lu CX, Li JF, Zhou W, Gan SM. Comprehensive index selection on superior growth and wood properties of Eucalyptus cloeziana for saw timber. J Nanjing for Univ Nat Sci Ed, 2019, 43(1): 1-8,
DOI
|
25 |
Li GY, Yang XY, Xu JM, Chen SG, Hu WuSJM, Y, Lu HF, Huang HJ,. Wind-resistance level selection and genetic testing of Eucalyptus urophylla hybrids family. Mol Plant Breed, 2020, 18: 2041-2051,
DOI
|
26 |
Liang RM, Zhao JM, Li B, Cai PA, Loh XJ, Xu CH, Chen P, Kai D, Zheng L. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials, 2020, 230,
DOI
|
27 |
Liu YH, Yang PH, Han CJ, Fan JF, Li XH, Ma JQ, Yang SR. Genetic variation and comprehensive selection of superior families of Pinus tabuleaformis carr. J Cent South Univ for Technol, 2007, 27(6): 21-25,
DOI
|
28 |
Liu WS, Xu JM, Li GY, Wu SJ, Zhang YF, Wu SJ, Bai HW, Liang GJ. The growth traits, timber, chemical components as well as wind resistance analysis of the F1 hybrids between E. urophylla × E. grandis. For Sci Technol, 2021, 2: 12-20,
DOI
|
29 |
Lu CS, Chen JB, Liang J, Guo DQ, Xiang DY. Genetic variation and selection of growth traits in Eucalyptus dunnii provenances plantation. Guangxi for Sci, 2018, 47(1): 18-23,
DOI
|
30 |
Lu CQ (2022) Study on the variation of wood properties and optimal selection of Chinese fir families and clones. Dissertation, Anhui Agricultural University. (in Chinese)
|
31 |
Luo JZ, Xie YJ, Cao JG, Lu WH, Ren SQ. Genetic variation in 2-year Eucalypt hybrids’ growth and typhoon resistance. Acta Prataculturae Sin, 2009, 18(6): 91-97,
DOI
|
32 |
Ma YH. Quantitative genetics in plant breeding, 1982 Nanjing Jiangsu Science and Technology Press (in Chinese)
|
33 |
Marcar N, Crawford DF. Trees for saline landscapes, 2004 Canberra Rural Industries and Research Development Corporation
|
34 |
Mayer H, Schindler D. Forest meteorological basis of forest damage caused by Tropical Storm “Losa”. Allg Forst Jagdztg, 2002, 173: 200-208 (in German)
|
35 |
McDonald MW, Brooker MIH, Butcher PA. A taxonomic revision of Eucalyptus camaldulensis (Myrtaceae). Aust Systematic Bot, 2009, 22(4): 257-285,
DOI
|
36 |
Mensforth LJ, Thorburn PJ, Tyerman SD, Walker GR. Sources of water used by riparian Eucalyptus camaldulensis overlying highly saline groundwater. Oecologia, 1994, 100(1–2): 21-28,
DOI
|
37 |
Niklas KJ, Spatz HC. Mechanical properties of wood disproportionately increase with increasing density. Am J Bot, 2012, 99(1): 169-170,
DOI
|
38 |
Nolet P, Doyon F, Bouffard D. Predicting stem windthrow probability in a northern hardwood forest using a wind intensity bio-indicator approach. Open J for, 2012, 02: 77-87,
DOI
|
39 |
Pimenta EM, dos Santos Brito EG, Gomes PF, Ramalho FMG, Vidaurre GB, Couto AM, Campoe OC, Hein PRG. Planting spacing influences radial variation of basic density and chemical composition of wood from fast growing young Eucalyptus plantations. Holzforschung, 2023, 77(9): 657-669,
DOI
|
40 |
Prasetyo A, Aiso-Sanada H, Ishiguri F, Wahyudi I, Wijaya IPG, Ohshima J, Yokota S. Variations in anatomical characteristics and predicted paper quality of three Eucalyptus species planted in Indonesia. Wood Sci Technol, 2019, 53(6): 1409-1423,
DOI
|
41 |
Quine CP, Gardiner BA. Johnson E, Miyanishi K. Understanding how the interaction of wind and trees results in windthrow, stem breakage, and canopy gap formation. Plant disturbance ecology: the process and the response, 2007 Amsterdam Elsevier 103-155,
DOI
|
42 |
Ruskin FR. Firewood crops: shrub and tree species for energy production, 1980 Washington, D.C. National Academy of Sciences
|
43 |
Shang XH. Study on wind resistance characteristics and association analysis of important traits in Eucalyptus camaldulensis, 2017 Beijing Chinese Academy of Forestry (in Chinese)
|
44 |
Shang XH, Luo JZ, Zhang PJ, Li C, Wang R, Wu ZH. Genetic analysis on early Eucalyptus camaldulensis growth and typhoon resistance. Mol Plant Breed, 2017, 15(5): 1918-1926,
DOI
|
45 |
Shang XH, Zhang PJ, Xie YJ, Luo JZ, Li C, Wu ZH. Wind resistance correlated to growth and wood properties of 50 Eucalyptus camaldulensis provenance families. J Zhejiang A F Univ, 2017, 34(6): 1029-1037,
DOI
|
46 |
Shang XH, Arnold RJ, Wu ZH, Zhang PJ, Liu G, Luo JZ, Zhan N. Combining quantitative data on growth, wood density and other traits with SSR markers to evaluate genetic diversity and structure in a planted population of Eucalyptus camaldulensis Dehn. Forests, 2019, 10(12): 1090,
DOI
|
47 |
Shang XH, Zhang PJ, Liu G, Zhan N, Wu ZH. Comparative transcriptomics analysis of contrasting varieties of Eucalyptus camaldulensis reveals wind resistance genes. PeerJ, 2022, 10,
DOI
|
48 |
Shen L, Xu JM, Li GY, Hu Y, Wu SJ, Liang GJ, Bai HW. Correlation analysis and selection on wind resistance and correlative characters of Eucalyptus urophylla × E. grandis F1 hybrids. For Res, 2020, 33(5): 13-20,
DOI
|
49 |
Sheng ZL, Chen YS. Quantitative genetics, 1999 Beijing, China Science Press (in Chinese)
|
50 |
Song YM, Huang Q, Huang YL. Genetic variation analysis of growth and wood properties of slash pine on the family level. For Res, 2012, 8: 671-676
|
51 |
Stackpole DJ, Vaillancourt RE, de Aguigar M, Potts BM. Age trends in genetic parameters for growth and wood density in Eucalyptus globulus. Tree Genet Genomes, 2010, 6(2): 179-193,
DOI
|
52 |
Tang QY, Feng MG. DPS data processing system—experimental design, statistical analysis and data mining, 2002 Beijing Science Press
|
53 |
Vincent M, Tong QJ, Terziev N, Daniel G, Bustos C, Escobar WG, Duchesne I. A comparison of nanoindentation cell wall hardness and brinell wood hardness in jack pine (Pinus banksiana Lamb.). Wood Sci Technol, 2014, 48(1): 7-22,
DOI
|
54 |
Wang HR. A Chinese appreciation of Eucalypts, 2010 Beijing, China Science Press (in Chinese)
|
55 |
Wu Y, Mao CL. Heritability, repetitive force in forest tree breeding and genetic gain concepts and thinking. Trop Agric Sci Technol, 2012, 35: 47-50,
DOI
|
56 |
Xiao SQ, Mu QY. A study on fibril angle of wood fiber walls of Chinese fir (Cunninghamia lanceolata) in Yunnan. J Southwest for Coll, 1992, 12(2): 221-225 (in Chinese)
|
57 |
Xu XY, Xiao L, Wang MH, Zhang HX. A comprehensive evaluation system for anti-typhoon performance of trees in coastal areas. J Zhejiang A F Univ, 2015, 32(4): 516-522,
DOI
|
58 |
Zheng XF, Qiu DB, Tao ZL, Lin D. Fibril angles of fiber walls in woods different wind-resistant clones of Hevea brasiliensis. Chin J Trop Crops, 2002, 23(1): 14-18,
DOI
|
59 |
Zhu CQ (2006) Study on the wind- resistance traits of Eucalyptus clones in Leizhou Peninsula. For Res 19(4):532–536 (in Chinese)
|