1 |
Atkinson MD. Betula pendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. J Ecol, 1992, 80: 837-870,
DOI
|
2 |
Caine RS, Yin X, Sloan J, Harrison EL, Mohammed U, Fulton T, Biswal AK, Dionora J, Chater CC, Coe RA, Bandyopadhyay A, Murchie EH, Swarup R, Quick WP, Gray JE. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol, 2019, 221: 371-384,
DOI
|
3 |
Dow GJ, Bergmann DC, Berry JA. An integrated model of stomatal development and leaf physiology. New Phytol, 2014, 201: 1218-1226,
DOI
|
4 |
Dudareva DM, Kvitkina AK, Yusupov IA, Yevdokimov IV. Changes in C:N:P ratios in plant biomass, soil and soil microbial biomass due to the warming and desiccation effect of flaring. Dokuchaev Soil Bull, 2018, 95: 71-89,
DOI
|
5 |
Ebeling S, Naumann K, Pollok S, Wardecki T, Vidal-y-Sy S, Nascimento JM, Boerries M, Schmidt G, Brandner JM, Merfort I. From a traditional medicinal plant to a rational drug. PLoS ONE, 2014, 9: 1-18,
DOI
|
6 |
Evans JR, Kaldenhoff R, Genty B, Terashima I. Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot, 2009, 60: 2235-2248,
DOI
|
7 |
Fernandez-Fuego D, Bertrand A, Gonzalez A. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens. Environ Pollut, 2017, 231: 1153-1162,
DOI
|
8 |
Franks PJ, Farquhar GD. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol, 2007, 143: 78-87,
DOI
|
9 |
Franks PJ, Doheny-Adams TW, Britton-Harper ZJ, Gray JE. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol, 2015, 207: 188-195,
DOI
|
10 |
Gill JA, Davy AJ. Variation and polyploidy within lowland populations of the B. pendula B. pubescens complex. New Phytol, 1983, 94: 433-451,
DOI
|
11 |
Grime JP, Hodgson JG, Hunt R. Comparative plant ecology, 1988 London Unwin-Hyman 742,
DOI
|
12 |
Gvozdetskii NA, Krivolutskii AE, Makunina AA (1973) Schema of fiziko-geograficheskogo raionirovania Tyumenskoi oblasti. In: Gvozdetskii NA (ed) Fiziko-geograficheskoe raionirovanie Tyumenskoi oblasti MSU, Moscow, pp 9–28
|
13 |
Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry, 2010, 83: 103-119,
DOI
|
14 |
Isichei AO, Sanford WW. The effects of waste gas flares on the surrounding vegetation in south–Eastern Nigeria. J Appl Ecol, 1976, 13: 177-187,
DOI
|
15 |
Ivanova LA, Pyankov VI. Structural adaptation of leaf mesophyll to shading. Russ J Plant Physiol, 2002, 49: 419-432,
DOI
|
16 |
Ivanova LA, Petrov MS, Kadushnikov RM. Determination of mesophyll diffusion resistance in Chamaerion angustifolium by the method of three-dimensional reconstruction of the leaf cell packing. Russ J Plant Physiol, 2006, 53: 316-324,
DOI
|
17 |
Ivanova LA, Chanchikova AG, Ronzhina DA, Zolotareva NV, Kosulnikov VV, Kadushnikov RM, Ivanov LA. Leaf acclimation to experimental climate warming in meadow plants of different functional types. Russ J Plant Physiol, 2016, 63: 849-860,
DOI
|
18 |
Ivanova LA, Yudina PK, Ronzhina DA, Ivanov LA, Holzel N. Leaf functional traits of abundant species predict productivity in three temperate herbaceous communities along an environmental gradient. New Phytol, 2018, 217: 558-570,
DOI
|
19 |
Ivanova LA, Ivanov LA, Ronzhina DA, Yudina PK, Migalina SV, Shinehuu T, Tserenkhand G, Voronin PYu, Anenkhonov OA, Bazha SN, Guning PD. Leaf traits of C3- and C4-plants indicating climatic adaptation along a latitudinal gradient in Southern Siberia and Mongolia. Flora, 2019, 254: 122-134,
DOI
|
20 |
Javelle M, Vernoud V, Rogowsky PM, Ingram GC. Epidermis: the formation and functions of a fundamental plant tissue. New Phytol, 2011, 189: 17-39,
DOI
|
21 |
Kalashnikova IV, Migalina SV, Ronzhina DA, Ivanov LA, Ivanova LA. Functional response of Betula species to edaphic and nutrient stress during restoration of fly ash deposits in the Middle Urals (Russia). Environ Sci Pollut Res, 2021, 28: 12714-12724,
DOI
|
22 |
Kalita R, Bhuyan K, Barua SCh, Saikia GK. Impact of elevated soil temperature on physiological parameters of tea plant growing adjacent to gas flaring site. Int J Plant Soil Sci, 2022, 34: 63-72,
DOI
|
23 |
Kivimäenpää M, Riikonen J, Sutinen S, Holopainen T. Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold acclimation. Tree Physiol, 2014, 34: 389-403,
DOI
|
24 |
Laisk A, Oya V, Rakhi M. Leaf diffusion resistance in relation to their anatomy. Sov Plant Physiol, 1970, 17: 40-48
|
25 |
Li SL, Tan TT, Fan YF, Razza MA, Wang ZL, Wang BB, Zhang JW, Tan XM, Chen P, Shafiq I, Yang WY, Yang F. Responses of leaf stomatal and mesophyll conductance to abiotic stress factors. J Integr Agricul, 2022, 21: 2787-2804,
DOI
|
26 |
Makhnev AK (1987) Vnutrividovaya izmenchivost’ i populyatsionnaya struktura berez sektsii Albae i Nanae (Intraspecific Variation and Population Structure of Birches of the Albae and Nanae Sections). Moscow Russia: Nauka
|
27 |
Migalina SV. Izmenenie razmerov i udelnoi poverkhnostnoi plotnosti lista u derevyev vdol zonalno-klimaticheskoi trehsekty Urala (Shifts in leaf size and LMA of woody plants over the zonal-climatic transect of the Urals). Botanicheskii Zhurnal, 2012, 97: 1293-1300
|
28 |
Migalina SV, Ivanova LA, Makhnev AK. Genetically determined volume of mesophyll cells of birch leaves as an adaptation of the photosynthetic apparatus to climate. Doklady Biol Sci, 2014, 459: 354-357,
DOI
|
29 |
Mokronosov AT. Ontogeneticheskii aspekt fotosinteza (Developmental aspect of photosynthesis), 1981 Moscow Nauka
|
30 |
Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol, 2005, 139: 497-508,
DOI
|
31 |
Navaneetha KM, Maleeka Begum SF, Sujatha R. Antioxidant, cytotoxicity, and genotoxicity testing of Betula pubescens. World J Pharm Pharmac Sci, 2018, 7: 1377-1382
|
32 |
Odjugo PAO, Osemwenkhae JE. Natural gas flaring affects microclimate and reduces maize. Int J Agricul Biol, 2009, 11: 408-412
|
33 |
Padilla FM, Pugnaire FI. The role of nurse plants in the restoration of degraded environments. Fron Ecol Environ, 2006, 4: 196-202,
DOI
|
34 |
Pandey VC. Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecol Eng, 2015, 82: 1-5,
DOI
|
35 |
Parkhurst DF. A three-dimensional model for CO2 and uptake by continuously distributed mesophyll in leaves. J Theor Biol, 1977, 67: 471-488,
DOI
|
36 |
Parkhurst DF. Diffusion of CO2 and other gases inside leaves. New Phytol, 1994, 126: 449-479,
DOI
|
37 |
Patocka J. Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed, 2003, 1: 7-12,
DOI
|
38 |
Pelham J, Mason PA (1981) Nutritional variants of birch. In: Last FT, Gardiner AS (eds) Forest and woodland ecology: an account of research being done in ITE. Cambridge NERC Institute of Terrestrial Ecology, pp 78–81
|
39 |
Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc Nat Acad Sci, 1997, 94: 13730-13734,
DOI
|
40 |
Scafaro AP, von Caemmerer S, Evans JR, Atwell BJ. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ, 2011, 34: 1999-2008,
DOI
|
41 |
Sharma KK, Hazarika S, Kalita B, Sharma B. Effect of flaring of natural gas in oil fields of Assam on rice cultivation. J Environ Sci Eng, 2011, 53: 289-298
|
42 |
Shavnin SA, Yusupov IA, Artemjeva EP, Golikov DYu. Influence of environment temperature rise on formation of ground vegetation near smoke jet. Lesnoy Zhurnal, 2006, 1: 22-28
|
43 |
Shavnin SA, Yusupov IA, Montile AA, Golikov DYu, Montile AI. Effect of increased ambient temperature on the growth rate of young pine forests in the impact zone of a petroleum gas flare. Russ J Ecol, 2009, 40: 1-5,
DOI
|
44 |
Shavnin SA, Yusupov IA, Marina NV, Montile AA, Golikov DYu. Seasonal changes in chlorophyll and carotenoid content in needles of Scots pines (Pinus sylvestris L.) exposed to the thermal field of a gas flare. Russ J Plant Physiol, 2021, 68: 526-535,
DOI
|
45 |
Shepherd T, Griffiths DW. The effects of stress on plant cuticular waxes. New Phytol, 2006, 171: 469-499,
DOI
|
46 |
Silva H, Sagardia S, Ortiz M, Franck N, Opazo M, Quiroz M, Baginsky C, Tapia C. Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L) Burm f. as a function of water availability. Revista Chilena De Historia Nat, 2014, 87: 13,
DOI
|
47 |
Stohl A, Klimont Z, Eckhardt S, Kupiainen K, Shevchenko VP, Kopeikin VM, Novigatsky AN. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmos Chem Phys, 2013, 13: 8833-8855,
DOI
|
48 |
Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI, Osborne CP. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol, 2012, 193: 387-396,
DOI
|
49 |
Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot, 2006, 57: 343-354,
DOI
|
50 |
Terashima I, Hanba YT, Tholen D, Niinemets U. Leaf functional anatomy in relation to photosynthesis. Plant Physiol, 2011, 155: 108-116,
DOI
|
51 |
Tolstikov GA, Flekhter OB, Shultz EE, Baltina LA, Tolstikov AG. Betulin and its derivatives. Chemistry and biological activity. Chem Sustain Develop, 2005, 13: 1-29
|
52 |
Ujowundu CO, Nwaogu LA, Ujowundu FN, Belonwu DC. Effect of gas flaring on the phytochemical and nutritional composition of Treculia africana and Vigna subterranean. Brit Biotech J, 2013, 3: 293-304,
DOI
|
53 |
Warren CR. Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2? A test with Eucalyptus regnans. Tree Physiol, 2008, 28: 11-19,
DOI
|
54 |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Marie-Laure N, Ülo N, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827,
DOI
|
55 |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets U, Osada OJ, N, Poorter H, Warton DI, Westoby M,. Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr, 2005, 14: 411-421,
DOI
|
56 |
Yang Y, Wang H, Harrison SP, Prentice IC, Wright IJ, Peng C, Lin G. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol, 2019, 221: 155-168,
DOI
|
57 |
Yusupov IA, Panova NK, Antipina TG. The peat-forming process in an oligotrophic bog in the impact zone of a gas flare in Western Siberia. Russ J Ecol, 2019, 50: 1-12,
DOI
|