1 |
Aghajani H, Fallah A, Emadian SF. Modelling and analyzing the surface fire behaviour in Hyrcanyan forests of Iran. J for Sci, 2014, 60(9): 353-362,
DOI
|
2 |
Aghajani H, Hojjati SM, Tajick-Ghanbari MA, Puormajidian MR, Borhani A. Molecular identification of ectomycorrhizal fungal communities associated with oriental beech trees (Fagus orientalis Lipsky) in Hyrcanyan forests of Iran. Iran J Sci Technol Trans A Sci, 2019, 43(1): 25-32,
DOI
|
3 |
Ajin RS, Loghin AM, Jacob MK, Vinod PG, Krishnamurthy RR. The risk assessment study of potential forest fire in Idukki wildlife sanctuary using RS and GIS techniques. Int J Adv Earth Sci Eng, 2016, 5(1): 308-318,
DOI
|
4 |
Alexandridis A, Vakalis D, Siettos CI, Bafas GV. A cellular automata model for forest fire spread prediction: the case of the wildfire that swept through Spetses Island in 1990. Appl Math Comput, 2008, 204(1): 191-201,
DOI
|
5 |
Arif M, Alghamdi KK, Sahel SA, Alosaimi SO, Alsahaft ME, Alharthi MA, Arif M. Role of machine learning algorithms in forest fire management: a literature review. J Robotics Autom, 2021, 5(1): 212-226,
DOI
|
6 |
Arnell NW, Freeman A, Gazzard R. The effect of climate change on indicators of fire danger in the UK. Environ Res Lett, 2021, 16(4): 044027,
DOI
|
7 |
Azevedo BF, Brito T, Lima J, Pereira AI. Optimum sensors allocation for a forest fires monitoring system. Forests, 2021, 12(4): 453,
DOI
|
8 |
Bar A, Michaletz ST, Mayr S. Fire effects on tree physiology. New Phytol, 2019, 223(4): 1728-1741,
DOI
|
9 |
Bisquert M, Caselles E, Sanchez JM, Caselles V. Application of artificial neural networks and logistic regression to the prediction of forest fire danger in Galicia using MODIS data. Int J Wildland Fire, 2012, 21(8): 1025-1029,
DOI
|
10 |
Bountzouklis C, Fox DM, Di Bernardino E. Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019. NHESS, 2022, 22(4): 1181-1200,
DOI
|
11 |
Bowman DM, Moreira-Munoz A, Kolden AC, Chavez RO, Munoz AA, Salinas F, Johnston FH. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, 2019, 48(4): 350-362,
DOI
|
12 |
Cascio WE. Wildland fire smoke and human health. Sci Total Environ, 2018, 624: 586-595,
DOI
|
13 |
Cheng T, Wang J. Integrated spatio-temporal data mining for forest fire prediction. Trans GIS, 2008, 12(5): 591-611,
DOI
|
14 |
Chong C, Huang E, Chen L. Effects of climate change on Canadian forest fires. SFJ, 2017, 3(2): 1-6,
DOI
|
15 |
Chuvieco E, Salas J. Mapping the spatial distribution of forest fire danger using GIS. Int J Geogr Inf Sci, 1996, 10(3): 333-345,
DOI
|
16 |
Colak E, Sunar F. Evaluation of forest fire risk in the Mediterranean Turkish forests: a case study of Menderes region, Izmir. Int J Disaster Risk Reduct, 2020, 45: 101479,
DOI
|
17 |
Cucchi M, Weedon GP, Amici A, Bellouin N, Lange S, Müller Schmied H, Buontempo C. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst Sci Data, 2020, 12(3): 2097-2120,
DOI
|
18 |
Da Rocha MJ, da Silva RG, Juvanhol RS. Forest fire action on vegetation from the perspective of trend analysis in future climate change scenarios for a Brazilian Savanna region. Ecol Eng, 2022, 175: 106488,
DOI
|
19 |
Daşdemir I, Aydın F, Ertugrul M. Factors affecting the behavior of large forest fires in Turkey. Environ Manage, 2021, 67(1): 162-175,
DOI
|
20 |
Digavinti J, Manikiam B. Satellite monitoring of forest fire impact and regeneration using NDVI and LST. J Appl Remote Sens, 2021, 15(4): 042412,
DOI
|
22 |
Duan SB, Li ZL, Tang BH, Wu H, Tang R. Direct estimation of land-surface diurnal temperature cycle model parameters from MSG–SEVIRI brightness temperatures under clear sky conditions. Remote Sens Environ, 2014, 150: 34-43,
DOI
|
23 |
Eskandari S, Miesel JR, Pourghasemi HR. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecol Indic, 2020, 118: 106720,
DOI
|
24 |
Garcia-Llamas P, Suárez-Seoane S, Taboada A, Fernández-Manso A, Quintano C, Fernández-García V, Fernández-Guisuraga JM, Marcos E, Calvo L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. Forest Ecol Manag, 2019, 433: 24-32,
DOI
|
25 |
Gizaw MS, Gan TY. Regional flood frequency analysis using support vector regression under historical and future climate. J Hydrol, 2016, 538: 387-398,
DOI
|
26 |
Gonzalez-Olabarria JR, Brotons L, Gritten D, Tudela A, Teres JA. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildland Fire, 2012, 21(7): 905-914,
DOI
|
27 |
Guha S, Govil H. An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environ Dev Sustain, 2021, 23(2): 1944-1963,
DOI
|
28 |
Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451(7176): 289-292,
DOI
|
29 |
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A. The ERA5 global reanalysis. Q J R Meteorol Soc, 2020, 146(730): 1999-2204,
DOI
|
30 |
Heydari M, Rostamy A, Najafi F, Dey DC. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J for Res, 2017, 28(1): 95-104,
DOI
|
31 |
Hu T, Zhao B, Li F, Dou X, Hu H, Sun L. Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in northeast China: implications for forest ecosystem carbon cycling. Geoderma, 2021, 402: 115273,
DOI
|
32 |
Hussin YA, Matakala M, Zagdaa N (2008) The applications of remote sensing and GIS in modeling forest fire hazard in Mongolia. In 21st congress of the international society for photogrammetry and remote sensing. p. 289–294
|
33 |
Kaewsong K, Johnson DJ, Bunyavejchewin S, Baker PJ. Fire impacts on recruitment dynamics in a seasonal tropical forest in continental southeast Asia. Forests, 2022, 13(1): 116,
DOI
|
34 |
Kirchmeier-Young MC, Gillett NP, Zwiers FW, Cannon AJ, Anslow FS. Attribution of the influence of human-induced climate change on an extreme fire season. Earth’s Future, 2019, 7(1): 2-10,
DOI
|
35 |
Koutsias N, Xanthopoulos G, Founda D, Xystrakis F, Nioti F, Pleniou M, Mallinis G, Arianoutsou M. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire, 2012, 22(4): 493-507,
DOI
|
36 |
Krtalic A, Prodan A, Racetin I (2019) Analysis of burned vegetation recovery by means of vegetation indices In: 19th International multidisciplinary scientific geoconference SGEM. vol. 19(2), p 449–456
|
37 |
Kukhar IV, Orlovskiy SN, Martynovsakaya SN (2020) Forest fires environmental impact study. In: IOP conference series: earth and environmental science. vol. 548(5), p 052061. IOP publishing. https://doi.org/10.1088/1755-1315/548/5/052061
|
38 |
Lecina-Diaz J, Martínez-Vilalta J, Alvarez A, Vayreda J, Retana J. Assessing the risk of losing forest ecosystem services due to wildfires. Ecosystems, 2021, 24(7): 1687-1701,
DOI
|
39 |
Li J, Song Y, Huang X, Li M. Comparison of forest burned areas in mainland China derived from MCD45A1 and data recorded in yearbooks from 2001 to 2011. Int J Wildland Fire, 2014, 24(1): 103-113,
DOI
|
40 |
Li R, Fu Y, Bergeron Y, Valeria O, Chavardès RD, Hu J, Wang Y, Duan J, Li D, Cheng Y. Assessing forest fire properties in Northeastern Asia and Southern China with satellite microwave Emissivity Difference Vegetation Index (EDVI). ISPRS J Photogramm Remote Sens, 2022, 183: 54-65,
DOI
|
41 |
Li X, Song W, Lian L, Wei X. Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sens, 2015, 7(4): 4473-4498,
DOI
|
42 |
|
43 |
Lizundia-Loiola J, Franquesa M, Boettcher M, Kirches G, Pettinari ML, Chuvieco E. Implementation of the burned area component of the copernicus climate change service: from MODIS to OLCI data. Remote Sens, 2021, 13(21): 4295,
DOI
|
44 |
Lizundia-Loiola J, Otón G, Ramo R, Chuvieco E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens Environ, 2020, 236: 111493,
DOI
|
45 |
Maniatis Y, Doganis A, Chatzigeorgiadis M. Fire risk probability mapping using machine learning tools and multi-criteria decision analysis in the GIS environment: a case study in the national park forest Dadia-Lefkimi-Soufli. Greece Appl Sci, 2022, 12(6): 2938,
DOI
|
46 |
Marvie Mohadjer MR. Silviculture, 2011 Tehran (in Persian) University of Tehran press
|
47 |
Mateus P, Fernandes PM. Forest fires in Portugal: dynamics, causes and policies. Forest context and policies in Portugal: present and future challenges, 2014 Charm Springer 97-115,
DOI
|
48 |
Mazzeo G, Marchese F, Filizzola C, Pergola N, Tramutoli V (2007) A multi-temporal robust satellite technique (RST) for forest fire detection. In: 2007 International workshop on the analysis of multi-temporal remote sensing images.p 1–6. https://doi.org/10.1109/multitemp.2007.4293060
|
49 |
Mofidi A, Soltanzadeh I, Yousefi Y, Zarrin A, Soltani M, Masoompour Samakosh J, Miller ST. Modeling the exceptional south Foehn event (Garmij) over the Alborz Mountains during the extreme forest fire of December 2005. Nat Hazards, 2015, 75(3): 2489-2518,
DOI
|
50 |
Ozupekce S. Use of land surface temperature (LST) data in the determination of high areas of forest fire in erdemli district. Int J Soc Sci Res, 2018, 11(57): 227-232,
DOI
|
51 |
Palandjian D, Gitas IZ, Wright R. Burned area mapping and post-fire impact assessment in the Kassandra peninsula (Greece) using Landsat TM and Quickbird data. Geocarto Int, 2009, 24(3): 193-205,
DOI
|
52 |
Pastor E, Zárate L, Planas E, Arnaldos J. Mathematical models and calculation systems for the study of wildland fire behaviour. Prog Energy Combust Sci, 2003, 29(2): 139-153,
DOI
|
53 |
Pimont F, Parsons R, Rigolot E, de Coligny F, Dupuy JL, Dreyfus P, Linn RR. Modeling fuels and fire effects in 3D: model description and applications. Environ Model Softw, 2016, 80: 225-244,
DOI
|
54 |
Podur J, Martell DL, Knight K. Statistical quality control analysis of forest fire activity in Canada. Can J Forest Res, 2002, 32(2): 195-205,
DOI
|
55 |
Progias P, Sirakoulis GC. An FPGA processor for modelling wildfire spreading. Math Comput Model, 2013, 57(5–6): 1436-1452,
DOI
|
56 |
Quintano C, Fernández-Manso A, Fernández-Manso O. Combination of landsat and sentinel-2 MSI data for initial assessing of burn severity. Int J Appl Earth Obs Geoinf, 2018, 64: 221-225,
DOI
|
57 |
Rasul A, Ibrahim GRF, Hameed HM, Tansey K. A trend of increasing burned areas in Iraq from 2001 to 2019. Environ Dev Sustain, 2021, 23(4): 5739-5755,
DOI
|
58 |
Romeiro JMN, Eid T, Antón-Fernández C, Kangas A, Trømborg E. Natural disturbances risks in European Boreal and temperate forests and their links to climate change–a review of modelling approaches. Forest Ecol Manag, 2022, 509: 120071,
DOI
|
59 |
Ryu JH, Han KS, Hong S, Park NW, Lee YW, Cho J. Satellite-based evaluation of the post-fire recovery process from the worst forest fire case in south Korea. Remote Sens, 2018, 10(6): 918,
DOI
|
60 |
Sachdeva S, Bhatia T, Verma A. GIS-based evolutionary optimized gradient boosted decision trees for forest fire susceptibility mapping. Nat Hazards, 2018, 92(3): 1399-1418,
DOI
|
61 |
Saidi S, Younes AB, Anselme B. A GIS-remote sensing approach for forest fire risk assessment: case of Bizerte region. Tunis Appl Geomat, 2021, 13(4): 587-603,
DOI
|
62 |
Singh M, Huang Z. Analysis of forest fire dynamics, distribution and main drivers in the Atlantic Forest. Sustainability, 2022, 14(2): 992,
DOI
|
63 |
Sivrikaya F, Kuçuk O. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol Inform, 2022, 68: 101537,
DOI
|
64 |
Souza CM, Roberts D. Mapping forest degradation in the Amazon region with Ikonos images. Int J Remote Sens, 2005, 26(3): 425-429,
DOI
|
65 |
Soydan O. Determination of forest fire risk using GIS: a case study in Nigde Turkey. Bartın Orman Fakültesi Dergisi, 2022, 24(1): 77-94,
DOI
|
66 |
Tansey K, Grégoire JM, Defourny P, Leigh R, Pekel JF, Van Bogaert E, Bartholomé E. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys Res Lett, 2008, 35(1): 1-6,
DOI
|
67 |
Tarek M, Brissette FP, Arsenault R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol Earth Syst Sci, 2020, 24(5): 2527-2544,
DOI
|
68 |
Tariq A, Shu H, Siddiqui S, Mousa BG, Munir I, Nasri A, Baqa MF. Forest fire monitoring using spatial-statistical and geo-spatial analysis of factors determining forest fire in margalla Hills, Islamabad. Pak Geomat Nat Hazards Risk, 2021, 12(1): 1212-1233,
DOI
|
69 |
Teodoro A, Amaral A. A statistical and spatial analysis of Portuguese forest fires in summer 2016 considering landsat 8 and sentinel 2A data. Environments, 2019, 6(3): 36,
DOI
|
70 |
Tosic I, Mladjan D, Gavrilov MB, Živanović S, Radaković MG, Putniković S, Marković SB. Potential influence of meteorological variables on forest fire risk in Serbia during the period 2000–2017. Open Geosciences, 2019, 11(1): 414-425,
DOI
|
71 |
|
72 |
Wang SD, Miao LL, Peng GX. An improved algorithm for forest fire detection using HJ data. Procedia Environ Sci, 2012, 13: 140-150,
DOI
|
73 |
Wardlow BD, Egbert SL, Kastens JH. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US central great plains. Remote Sens Environ, 2007, 108(3): 290-310,
DOI
|
74 |
Weng Q, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens Environ, 2014, 145: 55-67,
DOI
|
75 |
Witte JC, Douglass AR, Da Silva A, Torres O, Levy R, Duncan BN. NASA A-train and terra observations of the 2010 Russian wildfires. Atmos Chem Phys, 2011, 11(17): 9287-9301,
DOI
|
76 |
Wu Z, Middleton B, Hetzler R, Vogel J, Dye D. Vegetation burn severity mapping using landsat-8 and worldview-2. Photogramm Eng Remote Sensing, 2015, 81(2): 143-154,
DOI
|
21 |
Xu D, Dai LM, Shao GF, Tang L, Wang H. Forest fire risk zone mapping from satellite images and GIS for Baihe forestry bureau, Jilin China. J Forestry Res, 2005, 16(3): 169-174,
DOI
|
77 |
Yankovich KS, Yankovich EP, Baranovskiy NV. Classification of vegetation to estimate forest fire danger using landsat 8 images: case study. Math Probl Eng, 2019, 2019: 1-14,
DOI
|
78 |
Zhang ZX, Zhang HY, Zhou DW. Using GIS spatial analysis and logistic regression to predict the probabilities of human-caused grassland fires. J Arid Environ, 2010, 74(3): 386-393,
DOI
|
79 |
Zhao J, Wang L, Hou X, Li G, Tian Q, Chan E, Yue C. Fire regime impacts on postfire diurnal land surface temperature change over north American Boreal forest. J Geophys Res Atmos, 2021, 126(23): e2021JD035589,
DOI
|
80 |
Zhu J, Xie A, Qin X, Wang Y, Xu B, Wang Y. An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. Atmosphere, 2021, 12(2): 217,
DOI
|