1 |
Bai TC, Tao W, Chen YQ. Comparison of near-infrared spectrum pretreatment methods for Jujube leaf moisture content detection in the sand and dust area of Southern Xinjiang. Spectrosc Spectr Analysis, 2019, 39(4): 1323-1328 in Chinese
|
2 |
Bilgili E, Coskuner KA, Usta Y, Goltas M. Modeling surface fuels moisture content in pinus brutia stands. J For Res, 2019, 30(2): 577-587,
DOI
|
3 |
Brown TP, Inbar A, Duff TJ, Lane PN, Sheridan GJ. The sensitivity of fuel moisture to forest structure effects on microclimate. Agric for Meteorol, 2022, 316(108857): 1-15
|
4 |
Byram GM, Jemison GM. Solar radiation and forest fuel moisture. J Agric Res, 1943, 67(4): 149-176
|
5 |
Cawson JG, Nyman P, Schunk C, Sheridan GJ, Duff TJ, Gibos K, Bovill WD, Conedera M, Pezzatti GB, Menzel A. Estimation of surface dead fine fuel moisture using automated fuel moisture sticks across a range of forests worldwide. Int J Wildland Fire, 2020, 29(6): 548-559,
DOI
|
6 |
Ellis TM, Bowman DM, Jain P, Flannigan MD, Williamson GJ. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob Chang Biol, 2022, 28(4): 1544-1559,
DOI
|
7 |
Hiers JK, Stauhammer CL, O’brien JJ, Gholz HL, Martin TA, Hom J, Starr G,. Fine dead fuel moisture shows complex lagged responses to environmental conditions in a saw palmetto (Serenoa repens) flatwoods. Agric For Meteorol, 2019, 266–267: 20-28,
DOI
|
8 |
Hu HQ, Lu X, Sun L, Guan D. Dynamics and prediction models of ground surface dead fuel moisture content for typical stands in Great Xing'an Mountains, Northeast China. Chin J Appl Ecol, 2016, 27(7): 2212-2224 in Chinese
|
9 |
Hu HQ, Luo BZ, Luo SS, Sun L. Water content of surface ground fuel in Larix gmelinii-Betula platyphylla mixed forest of Nanwenhe, Daxing’an Mountains. Chinese Journal of Ecology, 2019, 38(5): 1314-1321 in Chinese
|
10 |
Jia JP, He XQ, Jin YJ (2009) Statistics (4th edition). China Renmin University Press, Beijing p 374. (in Chinese)
|
12 |
Lee HT, Won M, Yoon S, Jang K. Estimation of 10-hour fuel moisture content using meteorological data: a model inter-comparison study. Forests, 2020, 11(982): 1-19
|
13 |
Lei WD, Yu Y, Li XH, Xing J. Estimating dead fine fuel moisture content of forest surface, based on wireless sensor network and back-propagation neural network. Int J Wildland Fire, 2022, 31(4): 369-378,
DOI
|
14 |
Li X, Sun ZQ, Lu S, Omasa K. A multi-angular invariant spectral index for the estimation of leaf water content across a wide range of plant species in different growth stages. Remote Sens Environ, 2021, 253(112230): 1-19
|
15 |
Liu JB, Sun P, Sun L. Study on moisture content prediction model of surface fuels in principal stands, Kunming. J Central South University For Technol, 2018, 38(5): 53-58 in Chinese
|
16 |
Maffei C, Lindenbergh R, Menenti M. Combining multi-spectral and thermal remote sensing to predict forest fire characteristics. ISPRS J Photogramm Remote Sens, 2021, 181(2021): 400-412,
DOI
|
17 |
Man ZY, Hu HQ, Zhang YL, Liu FC, Li Y. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China. J Beijing For Univ, 2019, 41(3): 49-57 in Chinese
|
18 |
Masinda MM, Li F, Liu Q, Sun L, Hu TX. Prediction model of moisture content of dead fine fuel in forest plantations on Maoer Mountain,Northeast China. J For Res, 2021, 32(5): 2023-2035,
DOI
|
19 |
Miller EA. Moisture sorption models for fuel beds of standing dead grass in Alaska. Fire, 2018, 2(2): 1-18
|
20 |
Ni C, Zhang Y, Wang D. Moisture content quantization of Masson pine seedling leaf based on stacked autoencoder with near-infrared spectroscopy. J Electr Comput Eng, 2018, 8696202: 1-8
|
21 |
Nolan RH, Foster B, Griebel A, Choat B, Medlyn BE, Yebra M, Younes N, Boer MM. Drought-related leaf functional traits control spatial and temporal dynamics of live fuel moisture content. Agric For Meteorol, 2022, 319(108941): 1-10
|
22 |
Peng B, Zhang JW, Xing J, Liu JQ. Online moisture measurement of dead fine fuel on the forest floor using near-infrared reflectometry. Rev Sci Instrum, 2021, 92(065103): 1-8
|
23 |
Peng B, Zhang JW, Xing J, Liu JQ. Distribution prediction of moisture content of dead fuel on the forest floor of Maoershan National Forest, China using a LoRa wireless network. J For Res, 2021, 33(3): 899-909,
DOI
|
24 |
Qi HQ, Zhou Q, Lu XM, Wan XQ. Design and implementation of forest fire monitoring system based on Google maps. Video Eng, 2013, 37(17): 139-182 in Chinese
|
25 |
Shmuel A, Ziv Y, Heifetz E. Machine-learning-based evaluation of the time-lagged effect of meteorological factors on 10-hour dead fuel moisture content. Forest Ecol Manag, 2022, 505(119897): 1-9
|
26 |
Sun L, Liu Q, Hu TX. Advances in research on prediction model of moisture content of surface dead fuel in forests. Scientia Silvae Sinicae, 2021, 57(4): 141-152 in Chinese
|
27 |
Tsuchikawa S, Ma T, Inagaki T. Application of near-infrared spectroscopy to agriculture and forestry. Anal Sci, 2022, 38(2022): 635-642,
DOI
|
28 |
Xing J, Ye YH, Ma Z, Peng B, Yang LS, Song WL. NIR spectral characteristics of moisture content for forest litter. Spectroscopy Spectral Analysis, 2018, 38(10): 3101-3105 in Chinese
|
29 |
Yebra M, Quan XW, Riaño D, Larraondo PR, Van Dijk AIJM, Cary GJ. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens Environ, 2018, 212(2018): 260-272,
DOI
|
31 |
Zhang R, Hu HQ, Qu ZL, Hu TX. Diurnal variation models for fine fuel moisture content in boreal forests in China. J For Res, 2021, 32(3): 1177-1187,
DOI
|