1 |
Amatulli G, Domisch S, Tuanmu MN, Parmentier B, Ranipeta A, Malczyk J, Jetz W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci Data, 2018, 5: 1-15,
DOI
|
2 |
Arruda DM, Schaefer CE, Fonseca RS, Solar RR, Fernandes-Filho EI. Vegetation cover of Brazil in the last 21 ka: new insights into the Amazonian refugia and Pleistocenic arc hypotheses. Glob Ecol Biogeogr, 2018, 27: 47-56,
DOI
|
3 |
Bentz BJ, Millar CI, Vandygriff JC, Hansen EM. Great Basin bristlecone pine mortality: causal factors and management implications. For Ecol Manage, 2022, 509,
DOI
|
4 |
Berges L, Avon C, Arnaudet L, Archaux F, Chauchard S, Dupouey JL. Past landscape explains forest periphery-to-core gradient of understory plant communities in a reforestation context. Divers Distrib, 2016, 22: 3-16,
DOI
|
5 |
Buckley LB. Temperature-sensitive development shapes insect phenological responses to climate change. Curr Res Insect Sci, 2022, 52
|
6 |
Chapman BB, Brönmark C, Nilsson JÅ, Hansson LA. The ecology and evolution of partial migration. Oikos, 2011, 120: 1764-1775,
DOI
|
7 |
Cook CG, Jones RT, Langdon PG, Leng MJ, Zhang E. New insights on Late Quaternary Asian palaeomonsoon variability and the timing of the Last Glacial Maximum in southwestern China. Quat Sci Rev, 2011, 30: 808-820,
DOI
|
8 |
Coope GR. Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability?. Philos Trans Phys Sci Eng, 2004, 359: 209-214
|
9 |
Corrales Madrid JL, Martínez Carrillo JL, Osuna Martínez MB, Durán Pompa HA, Alonso Escobedo J, Javier Quiñones F, Ahmad A. Transportability of non-target arthropod field data for the use in environmental risk assessment of genetically modified maize in Northern Mexico. J Appl Entomol, 2018, 142: 525-538,
DOI
|
10 |
D’Souza ML, Van der Bank M, Shongwe Z, Rattray RD, Stewart R, Van Rooyen J, Hebert PD. Biodiversity baselines: tracking insects in Kruger National Park with DNA barcodes. Biol Conserv, 2021, 256: 109034,
DOI
|
11 |
Davies TJ, Purvis A, Gittleman JL. Quaternary climate change and the geographic ranges of mammals. Am Nat, 2009, 174: 297-307,
DOI
|
12 |
DeMarche ML, Doak DF, Morris WF. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob Chang Biol, 2019, 25: 775-793,
DOI
|
13 |
Du CC, Chen J, Jiang LY, Qiao GX. High correlation of species diversity patterns between specialist herbivorous insects and their specific hosts. J Biogeogr, 2020, 47: 1232-1245,
DOI
|
14 |
Duan YZ, Gao QB, Zhang FQ, Li YH, Fu PC, Chen SL. Phylogeographic analysis of the endemic species Sibiraea angustata reveals a marginal refugium in the Qinghai-Tibet Plateau. Nord J Bot, 2011, 29: 615-624,
DOI
|
15 |
Dumbleton LJ. Pleistocene climates and insect distributions. N Z Entomol, 1970, 4: 3-23,
DOI
|
16 |
Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Tubiello FN. Food, fibre and forest products. Clim Chang, 2007, 2007: 273-313
|
17 |
Edwards ME, Anderson PM, Brubaker LB, Ager TA, Andreev AA, Bigelow NH, Yu G. Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr bp. J Biogeogr, 2000, 27: 521-554,
DOI
|
18 |
Elith J, Phillips SJ, HastieT DM, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17: 43-57,
DOI
|
19 |
Englund G, Sarnelle O, Carpenter S. The im-portance of data-selection criteria: meta-analyses of streampredation experiments. Ecology, 1999, 80: 1132-1141,
DOI
|
20 |
Fan SH, Zeng XW, Zhang Q. Forest resources and environment in China. Chin for Sci Technol, 2004, 4(3): 88-95
|
21 |
Fan ZX, Bräuning A, Cao KF. Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655. Int J Climatol, 2008, 28: 1879-1887,
DOI
|
22 |
Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev, 2015, 90: 236-253,
DOI
|
23 |
Fei S, Morin RS, Oswalt CM, Liebhold AM. Biomass losses resulting from insect and disease invasions in US forests. Proc Natl Acad Sci, 2019, 116: 17371-17376,
DOI
|
24 |
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 2017, 37: 4302-4315,
DOI
|
25 |
Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv, 1997, 24: 38-49,
DOI
|
26 |
Fischbein D, Corley JC. Population ecology and classical biological control of forest insect pests in a changing world. For Ecol Manage, 2022, 520,
DOI
|
27 |
Florineth D, Schlüchter C. Alpine evidence for atmospheric circulation patterns in Europe during the last glacial maximum. Quat Res, 2000, 54: 295-308,
DOI
|
28 |
Forest and Grassland Pest Control Station of the State Forestry and Grassland Administration. Forestry pests in China, 2019 Beijing China Forestry Press
|
29 |
Forrest JR. Complex responses of insect phenology to climate change. Curr Opin Insect Sci, 2016, 17: 49-54,
DOI
|
30 |
Gallagher RV, Hughes L, Leishman MR. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography, 2012, 36: 531-540,
DOI
|
31 |
Gely C, Laurance SG, Stork NE. How do herbivorous insects respond to drought stress in trees?. Biol Rev, 2020, 95: 434-448,
DOI
|
140 |
Garcia-Rosello E, Guisande C, Manjarres-Hernandez A, Gonzalez-Dacosta J, Heine J, Pelayo-Villamil P, Gonzalez-Vilas L, Vari RP, Vaamonde A, Granado-Lorencio C. Can we derive macroecological patterns from primary Global Biodiversity Information Facility data?. Glob Ecol Biogeogr, 2015, 24: 335-347,
DOI
|
32 |
Harrison SP, Yu G, Takahara H, Prentice IC. Diversity of temperate plants in East Asia. Nature, 2001, 413: 129-130,
DOI
|
33 |
Harvey JA, Heinen R, Gols R, Thakur MP. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob Change Biol, 2020, 26: 6685-6701,
DOI
|
34 |
Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 2003, 84: 3105-3117,
DOI
|
35 |
Hawkins BA, Porter EE, Felizola Diniz-Filho JA. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 2003, 84: 1608-1623,
DOI
|
36 |
He Y, Dan L, Dong WJ, Ji JJ, Qin DH. The terrestrial NPP simulations in China since last glacial maximum. Chin Sci Bull, 2005, 50: 2074-2079,
DOI
|
37 |
Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80: 1150-1156,
DOI
|
38 |
Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature, 2000, 405: 907-913,
DOI
|
39 |
Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci, 2004, 359: 183-195,
DOI
|
40 |
Hicke JA, Meddens AJH, Kolden CA. Recent tree mortality in the western United States from bark beetles and forest fires. For Sci, 2016, 62: 141-153,
DOI
|
41 |
Hicke JA, Xu BB, Meddens AJH, Egan JM. Characterizing recent bark beetle-caused tree mortality in the western United States from aerial surveys. For Ecol Manag, 2020, 475,
DOI
|
42 |
Hijmans RJ, Graham CH. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Chang Biol, 2006, 12: 2272-2281,
DOI
|
43 |
Hill MP, Gallardo B, Terblanche JS. A global assessment of climatic niche shifts and human influence in insect invasions. Glob Ecol Biogeogr, 2017, 26: 679-689,
DOI
|
44 |
Howe M, Raffa KF, Aukema BH, Gratton C, Carroll AL. Numbers matter: how irruptive bark beetles initiate transition to self-sustaining behavior during landscape-altering outbreaks. Oecologia, 2022, 198: 681-698,
DOI
|
45 |
Hsu J. Late Cretaceous and Cenozoic vegetation in China, emphasizing their connections with North America. Ann Mo Bot Gard, 1983, 70: 490-508,
DOI
|
46 |
Huang XL, Ren SS, Qiao GX. Composition and characters of the aphid fauna in Hengduan Mountains region, China. Acta Zootaxon Sin, 2005, 30: 14-21
|
47 |
Huang XL, Qiao GX, Lei FM. Diversity and distribution of aphids in the Qinghai-Tibetan Plateau-Himalayas. Ecol Entomol, 2006, 31: 60-615,
DOI
|
48 |
Huang XL, Qiao GX, Lei FM. Use of parsimony analysis to identify areas of endemism of Chinese birds: implications for conservation and biogeography. Int J Mol Med Sci, 2010, 11: 2097-2108,
DOI
|
49 |
Husakova I, Munzbergova Z. Relative importance of current and past landscape structure and local habitat conditions for plant species richness in dry grassland-like forest openings. PLoS ONE, 2014, 9,
DOI
|
50 |
Jactel H, Koricheva J, Castagneyrol B. Responses of forest insect pests to climate change: not so simple. Curr Res Insect Sci, 2019, 35: 103-108
|
51 |
Jamieson MA, Trowbridge AM, Raffa KF, Lindroth RL. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol, 2012, 160: 1719-1727,
DOI
|
52 |
Jarnevich CS, Stohlgren TJ, Kumar S, Morisette JT, Holcombe TR. Caveats for correlative species distribution modeling. Ecol Inf, 2015, 29: 6-15,
DOI
|
53 |
Jiang WY, Cheng YF, Yang XX, Yang SL. Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration. J Appl Ecol, 2013, 50: 440-448,
DOI
|
54 |
Ju LX, Wang HK, Jiang DB. Simulation of the Last Glacial Maximum climate over East Asia with a regional climate model nested in a general circulation model. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 248: 376-390,
DOI
|
55 |
Kingsolver JG, Buckley LB. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change. Curr Opin Insect Sci, 2020, 41: 17-24,
DOI
|
56 |
Lake JA, Wade RN. Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J Exp Bot, 2009, 60: 3123-3131,
DOI
|
57 |
Laska MS, Wootton JT. Theoretical concepts and empirical approaches to measuring interaction strength. Ecology, 1998, 79: 461-476,
DOI
|
58 |
Lavergne S, Mouquet N, Thuiller W, Ronce O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst, 2010, 41: 321-350,
DOI
|
59 |
Lawing AM, Polly PD. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species’ response to climate change. PLoS ONE, 2011, 6,
DOI
|
60 |
Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Jepsen JU, Björkman C. Complex responses of global insect pests to climate warming. Front Ecol Environ, 2020, 18: 141-150,
DOI
|
61 |
Lei FM, Qu YH, Song G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr Zool, 2014, 60: 149-161,
DOI
|
62 |
Li BY. On the boundaries of the Hengduan Mountains. Mt Res, 1989, 7: 15-20
|
63 |
Li SF, Mao LP, Spicer RA, Lebreton-Anberrée J, Su T, Sun M, Zhou ZK. Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Palaeogeogr Palaeoclimatol Palaeoecol, 2015, 425: 14-40,
DOI
|
64 |
Li Q, Wu HB, Yu YY, Sun AZ, Luo YL. Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum. Quat Int, 2019, 500: 108-119,
DOI
|
65 |
Li JJ, Li Q, Wu YX, Ye LQ, Liu HH, Wei JF, Huang XL. Mountains act as museums and cradles for hemipteran insects in China: Evidence from patterns of richness and phylogenetic structure. Glob Ecol Biogeogr, 2021, 30: 1070-1085,
DOI
|
66 |
Liu JQ, Tian B. Origin, evolution, and systematics of Himalaya endemic genera. Newsl Himal Bot, 2007, 40: 20-27
|
67 |
Liu SG, Loveland TR, Kurtz RM. Contemporary carbon dynamics in terrestrial ecosystems in the Southeastern Plains of the United States. Environ Manag, 2004, 33: S442-S456,
DOI
|
68 |
Liu Z, Huang XL, Jiang LY, Qiao GX. The species diversity and geographical distribution of aphids in China (Hemiptera, Aphidoidea). Acta Zootaxono Sin, 2009, 34: 277-291
|
69 |
Liu YP, Shen ZH, Wang QG, Su XY, Zhang WJ, Shrestha N, Xu XT, Wang ZH. Determinants of richness patterns differ between rare and common species: implications for Gesneriaceae conservation in China. Diver Distrib, 2017, 23: 235-246,
DOI
|
70 |
Lobo JM, Jimenez-Valverde A, Real R. AUC: A misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr, 2008, 17: 145-151,
DOI
|
71 |
Logan JA, Régnière J, Powell JA. Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ, 2003, 1: 130-137,
DOI
|
72 |
Logan JA, Macfarlane WW, Willcox L. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem. Ecol Appl, 2010, 20: 895-902,
DOI
|
73 |
Mainali KP, Warren DL, Dhileepan K, McConnachie A, Strathie L, Hassan G, Karki D, Shrestha BB, Parmesan C. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Glob Chang Biol, 2015, 21: 4464-4480,
DOI
|
74 |
McCreadie JW, Adler PH. Forest ecoregions as predictors of lotic assemblages of blackflies (Diptera: Simuliidae). Ecography, 2006, 29: 603-613,
DOI
|
75 |
Merow C, Smith MJ, Silander JA Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36: 1058-1069,
DOI
|
76 |
Meyer C, Weigelt P, Kreft H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol Lett, 2016, 19: 992-1006,
DOI
|
77 |
Morse NB, Pellissier PA, Cianciola EN, Brereton RL, Sullivan MM, Shonka NK, Wheeler TB, McDowell WH. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol Soc, 2014, 19: 12,
DOI
|
78 |
Ni J, Yu G, Harrison SP, Prentice IC. Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 289: 44-61,
DOI
|
79 |
Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, Kassem KR. Terrestrial forest ecoregions of the world: a new map of life on EarthA new global map of terrestrial forest ecoregions provides an innovative tool for conserving biodiversity. Bioscience, 2001, 51: 933-938,
DOI
|
80 |
Osenberg CW, Sarnelle O, Cooper SD. Effect size in ecological experiments: the application of biological models in meta-analysis. Am Nat, 1997, 150: 798-812,
DOI
|
81 |
Osenberg CW, Sarnelle O, Cooper SD. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology, 1999, 80: 1105-1117,
DOI
|
82 |
Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst, 2006, 37: 637-669,
DOI
|
83 |
Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr, 2007, 34: 102-117,
DOI
|
84 |
Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Vendramin GG. Glacial refugia: hotspots but not melting pots of genetic diversity. Science, 2003, 300: 1563-1565,
DOI
|
85 |
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model, 2006, 190: 231-259,
DOI
|
86 |
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open-source release of Maxent. Ecography, 2017, 40: 887-893,
DOI
|
87 |
Pollak M, Cohen J. A comparison of the independent-samples t-test and the paired-samples t-test when the observations are nonnegatively correlated pairs. J Stat Plan Inference, 1981, 5: 133-146,
DOI
|
88 |
Pureswaran DS, Roques A, Battisti A. Forest insects and climate change. Curr for Rep, 2018, 4: 35-50,
DOI
|
89 |
Qian H, Ricklefs RE. Large-scale processes and the Asian bias in temperate plant species diversity. Nature, 2000, 407: 180-182,
DOI
|
90 |
Qiu YX, Fu CX, Comes HP. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol, 2011, 59: 225-244,
DOI
|
91 |
Qu YH, Luo X, Zhang RY, Song G, Zou FS, Lei FM. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Ecol Evol, 2011, 11: 1-17
|
92 |
Radosavljevic A, Anderson RP. Making better MAXENT models of species distributions: complexity, overfitting and evaluation. J Biogeogr, 2014, 41: 629-643,
DOI
|
93 |
Raffa KF, Mason CJ, Bonello P, Cook S, Erbilgin N, Keefover-Ring K, Klutsch JG, Villari C, Townsend PA. Defence syndromes in lodgepole–whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. Plant Cell Environ, 2017, 40: 1791-1806,
DOI
|
94 |
Safranyik L. Distribution of attacks and egg galleries by the spruce beetle around the bole of windthrown trees. J Entomol Soc BC, 2009, 106: 71-79
|
95 |
Safranyik L, Carroll AL, Regniere J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis VG, Taylor SW. Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol, 2010, 142: 415-442,
DOI
|
96 |
Sánchez-Montes G, Recuero E, Barbosa AM, Martínez-Solano Í. Complementing the Pleistocene biogeography of European amphibians: testimony from a southern Atlantic species. J Biogeogr, 2019, 46: 568-583,
DOI
|
97 |
Santos AM, Cianciaruso MV, Barbosa AM, Bini LM, Diniz-Filho JAF, Faleiro FV, Hortal J. Current climate, but also long-term climate changes and human impacts, determine the geographic distribution of European mammal diversity. Glob Ecol Biogeogr, 2020, 29: 1758-1769,
DOI
|
98 |
Schleicher J, Zaehringer JG, Fastré C, Vira B, Visconti P, Sandbrook C. Protecting half of the planet could directly affect over one billion people. Nat Sustain, 2019, 2: 1094-1096,
DOI
|
99 |
Schoener TW. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science, 2011, 331: 426-429,
DOI
|
100 |
Schowalter TD. Insect herbivore effects on forest ecosystem services. J Sustain for, 2012, 31: 518-536,
DOI
|
101 |
Seidl R, Rammer W, Blennow K. Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ Model Softw, 2014, 51: 1-11,
DOI
|
102 |
Shi YF, Zheng BX, Yao TD. Glaciers and environments during the Last Glacial Maximum (LGM) on the Tibetan Plateau. J Glaciol Geocryol, 1997, 19: 97-113
|
103 |
Smith JR, Letten AD, Ke PJ, Anderson CB, Hendershot JN, Dhami MK, Daily GC. A global test of forest ecoregions. Nat Ecol Evol, 2018, 2: 1889-1896,
DOI
|
104 |
Spruce JP, Hicke JA, Hargrove WW, Grulke NE, Meddens AJH. Use of MODIS NDVI Products to map tree mortality levels in forests affected by mountain pine beetle outbreaks. Forests, 2019, 10: 811,
DOI
|
105 |
Strauss SY, Lau JA, Schoener TW, Tiffin P. Evolution in ecological field experiments: implications for effect size. Ecol Lett, 2008, 11: 199-207,
DOI
|
106 |
Sui Y, Chen YT. Signals in temperature extremes emerge in China during the last millennium based on CMIP5 simulations. Clim Change, 2022, 172: 1-18,
DOI
|
107 |
Svenning JC, Fløjgaard C, Baselga A. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. J Anim Ecol, 2011, 80: 393-402,
DOI
|
108 |
Tan ZX, Liu SG, Johnston CA, Loveland TR, Tieszen LL, Liu JX, Kurtz R. Soil organic carbon dynamics as related to land use history in the northwestern Great Plains. Global Biogeochem Cycles, 2005, 19: GB3011,
DOI
|
109 |
Tang CQ, Matsui T, Ohashi H, Dong YF, Momohara A, Herrando-Moraira S, Qian S, Yang Y, Ohsawa M, Luu HT, Grote PJ, Krestov PV, LePage B, Werger M, Robertson K, Hobohm C, Wang CY, Peng MC, Chen XI, López- Pujol J. Identifying long- term stable refugia for relict plant species in East Asia. Nat Commun, 2018, 9: 4488,
DOI
|
110 |
Theodoridis S, Fordham DA, Brown SC, Li S, Rahbek C, Nogues-Bravo D. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat Commun, 2020, 11: 1-11,
DOI
|
111 |
Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol, 2005, 11: 2234-2250,
DOI
|
112 |
Tobin PC, Raffa KF. Spread rates do not necessarily predict outbreak dynamics in a broadly distributed invasive insect. For Ecol Manage, 2022, 520,
DOI
|
113 |
Turner JRG, Gatehouse CM, Corey CA. Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos, 1987, 48: 195-205,
DOI
|
114 |
Vaissi S. Historic range dynamics in Kaiser’s mountain newt (Neurergus kaiseri): Insights from phylogeographic analyses and species distribution modeling. Ecol Evol, 2021, 11: 7622-7633,
DOI
|
115 |
van Doan C, Pfander M, Guyer AS, Zhang X, Maurer C, Robert CA. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO2, temperature, and precipitation patterns. Ecol Evol, 2021, 11: 4182-4192,
DOI
|
116 |
Wagner DL. Insect declines in the Anthropocene. Annu Rev Entomol, 2020, 65: 457-480,
DOI
|
117 |
Wang LI, Wu ZQ, Bystriakova N, Ansell SW, Xiang QP, Heinrichs J, Schneider H, Zhang XC. Phylogeography of the Sino-Himalayan fern Lepisorus clathratus on “The Roof of the World”. PLoS ONE, 2011, 6: 25896,
DOI
|
118 |
Wang CJ, Wang R, Yu CM, Dang XP, Sun WG, Li QF, Wan JZ. Risk assessment of insect pest expansion in alpine ecosystems under climate change. Pest Manag Sci, 2021, 77: 3165-3178,
DOI
|
119 |
Wangen CE, Powell JA, Bentz BJ. Oviposition model for a southern population of mountain pine beetle. Bull Math Biol, 2022, 84: 133,
DOI
|
120 |
Wardhaugh CW. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol Rev, 2014, 89: 1021-1041,
DOI
|
121 |
Wei JF, Niu MM, Feng JN. Diversity and distribution patterns of scale insects in China. Ann Entomol Soc Am, 2016, 109: 405-414,
DOI
|
122 |
Wiens JJ, Donoghu MJ. Historical biogeography, ecology and species richness. Trends Ecol Evol, 2004, 19: 639-644,
DOI
|
123 |
Wu YJ, Colwell RK, Rahbek C, Zhang CL, Quan Q, Wang CK. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J Biogeogr, 2013, 40: 2310-2323,
DOI
|
124 |
Xu XX, Cheng FY, Peng LP, Sun YQ, Hu XG, Li SY, Xian HL, Jia KH, Abbott RJ, Mao JF. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling–Daba Mountains, a major glacial refugium in Central China. Ecol Evol, 2019, 9: 7528-7548,
DOI
|
125 |
Yadugiri VT. Climate change: the role of plant physiology. Curr Sci, 2010, 99: 423-425
|
126 |
Yan YJ, Yang X, Tang ZY. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecol Evol, 2013, 3: 4584-4595,
DOI
|
127 |
Yang H, Lin CP, Liang AP. Phylogeography of the rice spittle bug (Callitettix versicolor) implies two long-term mountain barriers in South China. Zool Res, 2016, 33: 592-602
|
128 |
Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol, 2009, 29: 3451-3451,
DOI
|
129 |
Yuan S, Huang M, Wang XS, Ji LQ, Zhang YL. Centers of endemism and diversity patterns for typhlocybine leafhoppers (Hemiptera: Cicadellidae: Typhlocybinae) in China. Insect Sci, 2014, 21: 523-536,
DOI
|
130 |
Zeuss D, Brandl R, Brändle M, Rahbek C, Brunzel S. Global warming favours light-coloured insects in Europe. Nature Commun, 2014, 5: 1-9,
DOI
|
131 |
Zhang CL, Quan Q, Wu YJ, Chen YH, He P, Qu YH, Lei FM. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai–Tibetan Plateau. Curr Zool, 2016, 63: 131-137
|
132 |
Zhu H, Wang DL, Wang L, Fang J, Sun W, Ren BZ. Effects of altered precipitation on insect community composition and structure in a meadow steppe. Ecol Entomol, 2014, 39: 453-461,
DOI
|