1 |
Alseekh S, Fernie AR. Metabolomics 20 years on: what have we learned and what hurdles remain?. Plant J, 2018, 94: 933-942,
DOI
|
2 |
Altunkaya A, Gökmen V. Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa). Food Chem, 2009, 117: 122-126,
DOI
|
3 |
Böttner L, Grabe V, Gablenz S, Böhme N, Appenroth KJ, Gershenzon J, Huber M. Differential localization of flavonoid glucosides in an aquatic plant implicates different functions under abiotic stress. Plant Cell Environ, 2021, 44: 900-914,
DOI
|
4 |
Cheng SY, Zhang WW, Sun NN, Xu F, Li LL, Liao YL, Cheng H. Production of flavonoids and terpene lactones from optimized Ginkgo biloba tissue culture. Not Bot Horti Agrobo, 2014, 42: 88-93,
DOI
|
5 |
Cheynier V. Phenolic compounds: from plants to foods. Phytochem Rev, 2012, 11: 153-177,
DOI
|
6 |
Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol, 2021, 63: 180-209,
DOI
|
7 |
Dong YS, Fu CH, Su P, Xu XP, Yuan J, Wang S, Zhang M, Zhao CF, Yu LJ. Mechanisms and effective control of physiological browning phenomena in plant cell cultures. Physiol Plantarum, 2016, 156: 13-28,
DOI
|
8 |
Dong NQ, Sun YW, Guo T, Shi CL, Zhang YM, Kan Y, Xiang YH, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Wang Y, Ye WW, Shan JX, Lin HX. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun, 2020, 11: 1-16,
DOI
|
9 |
Eisvand F, Razavi BM, Hosseinzadeh H. The effects of Ginkgo biloba on metabolic syndrome: A review. Phytother Res, 2020, 34: 1798-1811,
DOI
|
10 |
Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta, 2018, 248: 1-18,
DOI
|
11 |
Eveland AL, Jackson DP. Sugars, signalling, and plant development. J Exp Bot, 2012, 63: 3367-3377,
DOI
|
12 |
Fang CY, Luo J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism. Plant J, 2019, 97: 91-100,
DOI
|
13 |
Gao J, Xue JQ, Xue YQ, Liu R, Ren XX, Wang SL, Zhang XX. Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors. Plant Physiol Bioch, 2020, 149: 36-49,
DOI
|
14 |
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930,
DOI
|
15 |
Hao GP, Du XH, Zhao FX, Shi RJ, Wang JM. Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tiss Org, 2009, 97: 175-185,
DOI
|
16 |
He Y, Guo XL, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F. Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tiss Org, 2009, 98: 11-17,
DOI
|
17 |
Hesami M, Tohidfar M, Alizadeh M, Daneshvar MH. Effects of sodium nitroprusside on callus browning of Ficus religiosa: an important medicinal plant. J for Res, 2020, 31: 789-796,
DOI
|
18 |
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom, 2010, 45: 703-714,
DOI
|
19 |
Irshad M, He BZ, Liu S, Mitra S, Debnath B, Li M, Rizwan HM, Qiu DL. In vitro regeneration of Abelmoschus esculentus L. cv. Wufu: Influence of anti-browning additives on phenolic secretion and callus formation frequency in explants. Hortic Environ Biote, 2017, 58: 503-513,
DOI
|
65 |
Jones AMP, Saxena PK (2013) Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PloS One 8:e76802.
|
20 |
Jung IJ, Ahn JW, Jung S, Hwang JE, Hong MJ, Choi HI, Kim JB. Overexpression of rice jacalin-related mannose-binding lectin (OsJAC1) enhances resistance to ionizing radiation in Arabidopsis. BMC Plant Biol, 2019, 19: 1-16,
DOI
|
21 |
Kaewubon P, Ilok-Towatana HA, N, Teixeira D, Meesawat U,. Ultrastructural and biochemical alterations during browning of pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell Tiss Org, 2015, 121: 53-69,
DOI
|
22 |
Kwak EJ, Lim SI. Inhibition of browning by antibrowning agents and phenolic acids or cinnamic acid in the glucose–lysine model. J Sci Food Agr, 2005, 85: 1337-1342,
DOI
|
23 |
Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol, 2000, 20: 467-475,
DOI
|
24 |
Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci, 2016, 7: 735
|
25 |
Li Q, Yu HM, Meng XF, Lin JS, Li YJ, Hou BK. Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis. Plant Biol, 2018, 20: 10-19,
DOI
|
26 |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408,
DOI
|
27 |
Ma DW, Constabel CP. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci, 2019, 24: 275-289,
DOI
|
28 |
Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, Bossi S, Maffei ME, Bertea CM. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS ONE, 2012, 7,
DOI
|
29 |
Mustafa NR, de Winter W, van Iren F, Verpoorte R. Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc, 2011, 6: 715-742,
DOI
|
30 |
Nash KM, Shah ZA. Current perspectives on the beneficial role of Ginkgo biloba in neurological and cerebrovascular disorders. Integr Med Res, 2015, 10: 1-9
|
31 |
Peng M, Shahzad R, Gul A, Subthain H, Shen SQ, Lei L, Zheng ZG, Zhou JJ, Lu DD, Wang SC, Nishawy E, Liu XQ, Tohge T, Fernie AR, Luo J. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun, 2017, 8: 1-12,
DOI
|
32 |
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667,
DOI
|
33 |
Phillips GC, Garda M. Plant tissue culture media and practices: an overview. In Vitro Cell Dev-Pl, 2019, 55: 242-257,
DOI
|
34 |
Phongtongpasuk S, Piemthongkham P. Shikimic acid production from Ginkgo biloba via callus culture. Adv Mat Res, 2014, 931–932: 1524-1528
|
35 |
Popova EV, Lee EJ, Wu CH, Hahn EJ, Paek KY. A simple method for cryopreservation of Ginkgo biloba callus. Plant Cell Tiss Org, 2009, 97: 337-343,
DOI
|
36 |
Radia A, Jocelyne TG. Root formation from transgenic calli of Ginkgo biloba. Tree Physiol, 2003, 23: 713-718,
DOI
|
37 |
Santiago LJM, Louro RP, De Oliveira DE. Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate. Ann Bot-London, 2000, 86: 1023-1032,
DOI
|
38 |
Shi R, Shuford CM, Wang JP, Sun YH, Yang Z, Chen HC, Tunlaya-Anukit S, Li Q, Liu J, Muddiman DC, Sederoff RR, Chiang VL. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta, 2013, 238: 487-497,
DOI
|
39 |
Singh CR. Review on problems and its remedy in plant tissue culture. Asian J Biol Life Sci, 2018, 11: 165-172,
DOI
|
40 |
Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN: a metabolite mass spectral database. Ther Drug Monit, 2005, 27: 747-751,
DOI
|
41 |
Su XJ, Shen GA, Di SK, Dixon RA, Pang YZ. Characterization of UGT716A1 as a multi-substrate UDP: flavonoid glucosyltransferase gene in Ginkgo biloba. Front Plant Sci, 2017, 8: 2085,
DOI
|
42 |
Suekawa M, Fujikawa Y, Esaka M. Exogenous proline has favorable effects on growth and browning suppression in rice but not in tobacco. Plant Physiol Bioch, 2019, 142: 1-7,
DOI
|
43 |
Tang W, Newton RJ, Outhavong V. Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plantarum, 2004, 122: 386-395,
DOI
|
44 |
Toivonen PM, Brummell DA. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Tec, 2008, 48: 1-14,
DOI
|
45 |
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods, 2015, 12: 523-526,
DOI
|
46 |
Wang L, Cui JW, Jin B, Zhao JG, Xu HM, Lu ZG, Li WX, Li XX, Li LL, Liang EY, Rao XL, Wang SF, Fu CX, Cao FL, Dixon RA, Lin JX. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc Natl Acad Sci USA, 2020, 117: 2201-2210,
DOI
|
47 |
Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr Opin Plant Biol, 2020, 55: 100-108,
DOI
|
48 |
Wilson AE, Tian L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. Plant J, 2019, 100: 1273-1288,
DOI
|
49 |
Xie C, Mao XZ, Huang JJ, Ding Y, Wu JM, Dong S, Kong L, Gao G, Li CY, Wei LP. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322,
DOI
|
50 |
Xu CJ, Zeng BY, Huang JM, Huang W, Liu YM. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning. PLoS ONE, 2015, 10,
DOI
|
51 |
Xu WJ, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 20: 176-185,
DOI
|
52 |
Xu NT, Liu S, Lu ZG, Pang SY, Wang L, Wang L, Li WX. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants, 2020, 9: 1162,
DOI
|
53 |
Yang B, Liu HL, Yang JL, Gupta VK, Jiang YM. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Tech, 2018, 79: 116-124,
DOI
|
54 |
Yang XM, Zhou TT, Su XY, Wang GB, Zhang XH, Guo QR, Cao FL. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. J for Res, 2021, 32: 765-778,
DOI
|
55 |
Yang XM, Zhou TT, Wang MK, Li TT, Wang GB, Fu FF, Cao FL. Systematic investigation and expression profiles of the GbR2R3-MYB transcription factor family in ginkgo (Ginkgo biloba L.). Int J Biol Macromol, 2021, 172: 250-262,
DOI
|
56 |
Yonekura-Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J, 2011, 66: 182-193,
DOI
|
57 |
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The origin and evolution of plant flavonoid metabolism. Front Plant Sci, 2019, 10: 943,
DOI
|
58 |
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol, 2010, 11: R14,
DOI
|
59 |
Zhang WW, Xu F, Cheng SY, Liao YL. Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes Genom, 2018, 40: 49-61,
DOI
|
60 |
Zhang K, Su JJ, Xu M, Zhou ZH, Zhu XY, Ma X, Hou JJ, Tan LB, Zhu ZF, Cai HW, Liu FX, Sun HY, Gu P, Li C, Liang YT, Zhao WS, Sun CQ, Fu YC. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat Commun, 2020, 11: 443,
DOI
|
61 |
Zhang WW, Liu CQ, Zhao J, Ma TY, He ZD, Huang MG, Wang YS. Modification of structure and functionalities of ginkgo seed proteins by pH-shifting treatment. Food Chem, 2021, 358,
DOI
|
62 |
Zhao YP, Fan GY, Yin PP, Sun S, Li N, Hong XN, Hu G, Zhang H, Zhang FM, Han JD, Hao YJ, Xu QW, Yang XW, Xia WJ, Chen WB, Lin HY, Zhang R, Chen J, Zheng XM, Lee SM, Lee J, Uehara K, Wang J, Yang HM, Fu CX, Liu X, Xu X, Ge S. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat Commun, 2019, 10: 4201,
DOI
|
63 |
Zhou ZY. An overview of fossil Ginkgoales. Palaeoworld, 2009, 18: 1-22,
DOI
|
64 |
Zhou TT, Yang XM, Fu FF, Wang GB, Cao FL. Selection of suitable reference genes based on transcriptomic data in Ginkgo biloba under different experimental conditions. Forests, 2020, 11: 1217,
DOI
|