1 |
Adab H, Kanniah KD, Solaimani K. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards, 2013, 65(3): 1723-1743,
DOI
|
2 |
Ahamed N, Rao GK, Murthy R. GIS-based fuzzy membership model for crop-land suitability analysis. Agric Syst, 2000, 63: 75-95,
DOI
|
3 |
Ajin RS, Loghin AM, Jacob MK, Vinod PG, Krishnamurthy RR. The risk assessment of potential forest fire in Idukki Wildlife Sanctuary using RS and GIS techniques. Int J Adv Earth Sci Eng, 2016, 5: 308-318,
DOI
|
4 |
Aldersley A, Murray SJ, Cornell SE. Global and regional analysis of climate and human drivers of wildfire. Sci Total Environ, 2011, 409: 3472-3481,
DOI
|
5 |
Amiri F, Shariff MA. Application of geographic information systems in land use suitability evaluation for beekeeping: A case study of Vahregan watershed (Iran). African J Agr Res, 2012, 7(1): 89-97
|
6 |
Archibald S, Roy DP, Van Wilgen BW, Scholes RJ. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Chang Biol, 2009, 15: 612-630,
DOI
|
7 |
Arpaci A, Malowerschnig B, Sass O, Vacik H. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl Geogr, 2014, 53: 258-270,
DOI
|
8 |
Austin LV, Silvis A, Mark Ford W, Powers KE. Effects of historic wildfire and prescribed fire on site occupancy of bats in Shenandoah National Park, Virginia, USA. J for Res, 2020, 31: 1255-1270,
DOI
|
9 |
Banerjee P. Maximum entropy-based forest fire likelihood mapping: analysing the trends, distribution, and drivers of forest fires in Sikkim Himalaya. Scand J for Res, 2021, 36(4): 275-288,
DOI
|
10 |
Bar Massada A, Syphard AD, Stewart SI, Radeloff VC. Wildfire ignition-distribution modelling: a comparative study in the Huron-Manistee National Forest, Michigan, USA. Int J Wildland Fire, 2012, 22(2): 174-183,
DOI
|
11 |
Bar Massada A, Syphard AD, Stewart SI, Radeloff VC. Wildfire ignition-distribution modelling: A comparative study in the Huron-Manistee National Forest, Michigan, USA. Int J Wildland Fire, 2013, 22: 174-183,
DOI
|
12 |
Bekar İ, Tavşanoğlu Ç, Pezzatti GB, Vacik H, Pausas JG, Bugmann H, Petter G. Cross-regional modelling of fire occurrence in the Alps and the Mediterranean Basin. Int J Wildland Fire, 2020, 29: 712-722,
DOI
|
13 |
Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Zamora R. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model, 2010, 221(1): 46-58,
DOI
|
14 |
Collins MG, Steiner FR, Rushman MJ. Land-use suitability analysis in the United States: historical development and promising technological achievements. Environ Manage, 2001, 28(5): 611-621,
DOI
|
15 |
Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F. Viegas DX. Lightning-induced fires in the Alpine region: An increasing problem. International Conference on Forest Fire Research, Coimbra, 27–30 November 2006, 2006 ADAI/CEIF, University of Coimbra (CD-ROM), Portugal Coimbra 1-9
|
16 |
Costafreda-Aumedes S, Cosmas C, Vega-Garcia C. Human-caused fire occurrence modelling in perspective: A review. Int J Wildland Fire, 2017, 26: 983-998,
DOI
|
17 |
Costafreda-Aumedes S, Vega-Garcia C, Cosmas C. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions. J Environ Manage, 2018, 217: 90-99,
DOI
|
18 |
De Angelis A, Ricotta C, Conedera M, Pezzatti GB. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions. PLoS ONE, 2015, 10(2): ,
DOI
|
19 |
Demeke D, Afework B. Habitat association and distribution of rodents and insectivores in Chebera Churchura National Park, Ethiopia. Trop Ecol, 2014, 55: 221-229
|
20 |
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib, 2011, 17: 43-57,
DOI
|
21 |
Eugenio FC, Dos Santos AR, Fiedler NC, Ribeiro GA, Da Silva AG, Dos Santos ÁB, Paneto GG, Schettino VR. Applying GIS to develop a model for forest fire risk: a case study in Espírito Santo, Brazil. J Environ Manage, 2016, 173: 65-71,
DOI
|
22 |
FAO (2007) Fire management: global assessment 2006. A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. Issue 151. ISBN: 978-92-5-105666-0
|
23 |
Fick SE, Hijmans RJ. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol, 2017, 37(12): 4302-4315,
DOI
|
24 |
Güngöroğlu C. Determination of forest fire risk with fuzzy analytic hierarchy process and its mapping with the application of GIS: The case of Turkey/Çakırlar. Hum Ecol Risk Assess Int J, 2017, 23(2): 388-406,
DOI
|
25 |
Hastie T, Tibshirani R, Friedman J (2009) Overview of Supervised Learning. In: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84858-7_2
|
26 |
Hernandez-Leal PA, Arbelo M, Gonzalez-Calvo A. Fire risk assessment using satellite data. Adv Space Res, 2006, 37(4): 741-746,
DOI
|
27 |
Iwan S, Mahmud AR, Mansor S, Mohamed Shariff AR, Nuruddin AA. GIS-grid-based and multi-criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang, Malaysia. Disaster Prevention and Management: an International Journal, 2004, 13(5): 379-386,
DOI
|
28 |
Jaiswal RK, Mukherjee S, Raju KD, Saxena R. Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs, 2002, 4(1): 1-10
|
29 |
Kayet N, Chakrabarty A, Pathak K, Sahoo S, Dutta T, Hatai BK. Comparative analysis of multi-criteria probabilistic FR and AHP models for forest fire risk (FFR) mapping in Melghat Tiger Reserve (MTR) Forest. J for Res, 2020, 31(2): 565-579,
DOI
|
30 |
Krawchuk MA, Cumming SG, Flannigan MD, Wein RW. Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology, 2006, 87: 458-468,
DOI
|
31 |
Kwak H, Lee WK, Saborowski J, Lee SY, Won MS, Koo KS, Lee MB, Kim SN. Estimating the spatial pattern of human-caused forest fires using a generalized linear mixed model with spatial autocorrelation in South Korea. Int J Geogr Inf Sci, 2012, 26: 1589-1602,
DOI
|
32 |
Li J, Shan YL, Yin SN, Wang MX, Su L, Wang DN. Nonparametric multivariate analysis of variance for affecting factors on the extent of forest fire damage in Jilin Province. China J for Res, 2019, 30(6): 2185-2197,
DOI
|
33 |
Malczewski J. GIS-based land-use suitability analysis: A critical overview. Prog Plann, 2004, 62: 3-65,
DOI
|
34 |
Martínez J, Vega-Garcia C, Chuvieco E. Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manage, 2009, 90: 1241-1252,
DOI
|
35 |
Miller C, Ager AA. A review of recent advances in risk analysis for wildfire management. Int J Wildland Fire, 2013, 22: 1-14,
DOI
|
36 |
Mitchell JW. Power line failures and catastrophic wildfires under extreme weather conditions. Eng Fail Anal, 2013, 35: 726-735,
DOI
|
37 |
Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JM. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For Ecol Manage, 2012, 275: 117-129,
DOI
|
38 |
Parisien MA, Moritz MA. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr, 2009, 79: 127-154,
DOI
|
39 |
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model, 2006, 190(3–4): 231-259,
DOI
|
40 |
Pomerol JC, Barba-Romero S (2000) Outranking Methods. In: Multicriterion Decision in Management. International Series in Operations Research & Management Science, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4459-3_7
|
41 |
Pourghasemi HR. GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models. Scand J Forest Res, 2016, 31(1): 80-98,
DOI
|
42 |
Puri K, Areendran G, Raj K, Mazumdar S, Joshi PK. Forest fire risk assessment in parts of Northeast India using geospatial tools. J for Res, 2011, 22(4): 641-647,
DOI
|
43 |
Rahmati O, Pourghasemi HR, Melesse AM. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region. Iran Catena, 2016, 137: 360-372,
DOI
|
44 |
Rasooli SB, Bonyad AE. Evaluating the efficiency of the Dong model in determining fire vulnerability in Iran’s Zagros forests. J for Res, 2019, 30(4): 1447-1458,
DOI
|
45 |
Renard Q, Pélissier R, Ramesh BR, Kodandapani N. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. Int J Wildland Fire, 2012, 21: 368-379,
DOI
|
46 |
Sakellariou S, Tampekis S, Samara F, Flannigan M, Jaeger D, Christopoulou O, Sfougaris A. Determination of fire risk to assist fire management for insular areas: the case of a small Greek island. J for Res, 2019, 30(2): 589-601,
DOI
|
47 |
Sarı F. Forest fire susceptibility mapping via multi-criteria decision analysis techniques for Mugla, Turkey: A comparative analysis of VIKOR and TOPSIS. For Ecol Manage, 2021, 480,
DOI
|
48 |
Schoennagel T, Veblen TT, Romme WH. The interaction of fire, fuels, and climate across rocky mountain forests. Bioscience, 2004, 54: 661-676,
DOI
|
49 |
Setiawan I, Mahmud AR, Mansor S, Mohamed Shariff AR, Nuruddin AA. GIS-grid-based and multi-criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang. Malaysia Disaster Prevent Manag, 2004, 13(5): 379-386,
DOI
|
50 |
Sowmya SV, Somashekar RK. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary. India J Environ Biol, 2010, 31(6): 969-974
|
51 |
Suryabhagavan KV, Alemu M, Balakrishnan M. GIS-based multi-criteria decision analysis for forest fire susceptibility mapping: a case study in Harenna forest, southwestern Ethiopia. Trop Ecol, 2016, 57(1): 33-43
|
52 |
Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK. Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire, 2008, 17: 602-613,
DOI
|
53 |
Tariq A, Shu H, Siddiqui S, Munir I, Sharifi A, Li Q, Lu L. Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. J for Res, 2022, 33: 183-194,
DOI
|
54 |
Tian X, Zhao F, Shu L, Wang M. Distribution characteristics and the influence factors of forest fires in China. For Ecol Manage, 2013, 310: 460-467,
DOI
|
55 |
Vacchiano G, Foderi C, Berretti R, Marchi E, Motta R. Modeling anthropogenic and natural fire ignitions in an inner-alpine valley. Nat Hazards Earth Syst Sci, 2018, 18: 935-948,
DOI
|
56 |
Vadrevu KP, Eaturu A, Badarinath KV. Fire risk evaluation using multicriteria analysis-a case study. Environ Monit Assess, 2010, 166(1–4): 223-239,
DOI
|
57 |
Vilar L, Gómez I, Martínez-Vega J, Echavarría P, Riaño D, Martín MP. Multitemporal modelling of socio-economic wildfire drivers in Central Spain between the 1980s and the 2000s: Comparing generalized linear models to machine learning algorithms. PLoS ONE, 2016, 11,
DOI
|
58 |
Wotton BM, Martell DL, Logan KA. Climate change and people-caused forest fire occurrence in Ontario. Clim Change, 2003, 60: 275-295,
DOI
|
59 |
Xu D, Dai LM, Shao GF, Tang L, Wang H. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin. China J for Res, 2005, 16(3): 169-174,
DOI
|
60 |
Yago M, María Z, Marcos RM. Modelling temporal variation of fire-occurrence towards the dynamic prediction of human wildfire ignition danger in northeast Spain. Geomat Nat Haz Risk, 2019, 10(1): 385-411,
DOI
|
61 |
You W, Lin L, Wu L, Ji Z, You J, Zhu J, Fan Y, He D. Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability. Ecol Indic, 2017, 77: 176-184,
DOI
|
62 |
Ziccardi LG, Thiersch CR, Yanai AM, Fearnside PM, Ferreira-Filho PJ. Forest fire risk indices and zoning of hazardous areas in Sorocaba, São Paulo state. Brazil J for Res, 2020, 31: 581-590,
DOI
|
63 |
Zolekar RB, Bhagat VS. Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Comput Electron Agr, 2015, 118: 300-321,
DOI
|