1 |
Arp WJ, Drake BG. Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2. Plant Cell Environ, 1991, 14: 1003-1006,
DOI
|
2 |
Bloom AJ, Chapin FS, Mooney HA. Resource limitation in plants: an economic analogy. Annu Rev Ecol Syst, 1985, 16: 363-392,
DOI
|
3 |
Burton AJ, Jarvey JC, Jarvi MP, Zak DR, Pregitzer KS. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Glob Chang Biol, 2012, 18: 258-266,
DOI
|
4 |
Canham CD, Kobe RK, Latty EF, Chazdon RL. Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia, 1999, 121: 1-11,
DOI
|
5 |
Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu X, Richardson AD. Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol, 2013, 200: 1145-1155,
DOI
|
6 |
Cechin I, Fumis TdF. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci, 2004, 166: 1379-1385,
DOI
|
7 |
Cheng L, Ma F, Ranwala D. Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply. Tree Physiol, 2004, 24: 91-98,
DOI
|
8 |
Curtis PS, Wang X. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 1998, 113: 299-313,
DOI
|
9 |
De Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY Jr, Dos Santos RV, Teixeira MM, Souza GM, Buckeridge MS. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ, 2008, 31: 1116-1127,
DOI
|
10 |
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R. Nonstructural carbon in woody plants. Annu Rev Plan Biol, 2014, 65: 667-687,
DOI
|
11 |
Dijkstra FA, Cheng W. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett, 2007, 10: 1046-1053,
DOI
|
12 |
Dong J, Hunt J, Delhaize E, Zheng SJ, Jin CW, Tang C. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: a review. Sci Total Environ, 2021, 754: 142434,
DOI
|
13 |
Du Y, Lu R, Xia J, Martin A. Impacts of global environmental change drivers on non- structural carbohydrates in terrestrial plants. Funct Ecol, 2020, 34(8): 1525-1536,
DOI
|
14 |
Evans JR, Terashima I. Photosynthetic characteristics of spinach leaves grown with different nitrogen treatments. Plant Cell Physiol, 1988, 29: 157-165
|
15 |
Foyer CH, Parry M, Noctor G. Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot, 2003, 54: 585-593,
DOI
|
16 |
Granath G, Strengbom J, Breeuwer A, Heijmans MM, Berendse F, Rydin H. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia, 2009, 159: 705-715,
DOI
|
17 |
Guo DL, Mitchell RJ, Hendricks JJ. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 2004, 140: 450-457,
DOI
|
18 |
Guo HX, Xu B, Wu Y, Shi FS, Wu C, Wu N. Allometric partitioning theory versus optimal partitioning theory: the adjustment of biomass allocation and Internal C-N balance to shading and nitrogen addition in Fritillaria unibracteata (Liliaceae). Polish J Ecol, 2016, 64: 189-199,
DOI
|
19 |
Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH. Forest carbon balance under elevated CO2. Oecologia, 2002, 131: 250-260,
DOI
|
20 |
Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees–from what we can measure to what we want to know. New Phytol, 2016, 211: 386-403,
DOI
|
21 |
Hättenschwiler S, Körner C. Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia, 1997, 113: 104-114,
DOI
|
22 |
Hicks WK, Leith ID, Woodin SJ, Fowler D. Can the foliar nitrogen concentration of upland vegetation be used for predicting atmospheric nitrogen deposition? Evidence from field surveys. Environ Pollut, 2000, 107: 367-376,
DOI
|
23 |
Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J. Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci, 2007, 26(5–6): 265-283,
DOI
|
24 |
Idso SB, Kimball BA. Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees. Plant Physiol, 1992, 99: 341-343,
DOI
|
25 |
Imaji A, Seiwa K. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad-leaved tree species. Oecologia, 2010, 162: 273-281,
DOI
|
26 |
Invers O, Kraemer GP, Pérez M, Romero J. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J Exp Mar Biol Ecol, 2004, 303: 97-114,
DOI
|
27 |
Kobe RK, Iyer M, Walters MB. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology, 2010, 91: 166-179,
DOI
|
28 |
Kozlowski TT. Carbohydrate sources and sinks in woody plants. Bot Rev, 1992, 58(2): 107-222,
DOI
|
29 |
Kraemer GP, Mazzella L, Alberte RS. Nitrogen assimilation and partitioning in the mediterranean seagrass Posidonia oceanica. Mar Ecol, 1997, 18: 175-188,
DOI
|
30 |
Li MH, Cherubini P, Dobbertin M, Arend M, Xiao WF, Rigling A. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biol, 2013, 15: 177-184,
DOI
|
31 |
Li RS, Yang QP, Zhang WD, Zheng WH, Wang SL. Response of nonstructural carbohydrates to thinning and understory removal in a Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantation. Trees, 2018, 32: 801-808,
DOI
|
32 |
Li WB, Hartmann H, Adams HD, Zhang HX, Jin CJ, Zhao CY, Guan DX, Wang AZ, Yuan FH, Wu JB. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiol, 2018, 38: 1706-1723
|
33 |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462,
DOI
|
34 |
Liu J, Wu NN, Wang H, Sun JF, Peng B, Jiang P, Bai E. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Ecology, 2016, 97: 1796-1806,
DOI
|
35 |
Long SP, Ainsworth EA, Rogers A, Ort DR. Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol, 2004, 55: 591-628,
DOI
|
36 |
Lü XT, Reed SC, Yu Q, Han XG. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant Soil, 2016, 398: 111-120,
DOI
|
37 |
Luo YQ, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, Murtrie REM, Oren R, Parton WJ. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 2004, 54: 731-739,
DOI
|
38 |
Luo ZB, Calfapietra C, Liberloo M, Scarascia-Mugnozza G, Polle A. Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N fertilization. Global Change Biol, 2006, 12: 272-283,
DOI
|
39 |
Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol Monogr, 2016, 86: 495-516,
DOI
|
40 |
Mašková P, Radochová B, Lhotáková Z, Michálek J, Lipavská H. Nonstructural carbohydrate-balance response to long-term elevated CO2 exposure in European beech and Norway spruce mixed cultures: biochemical and ultrastructural responses. Can J for Res, 2017, 47: 1488-1494,
DOI
|
41 |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytol, 2008, 178: 719-739,
DOI
|
42 |
Mei L, Xiong YM, Gu JC, Wang ZQ, Guo DL. Whole-tree dynamics of non-structural carbohydrate and nitrogen pools across different seasons and in response to girdling in two temperate trees. Oecologia, 2015, 177: 333-344,
DOI
|
43 |
Mo JM, Li DJ, Gundersen P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China. Eur J Forest Res, 2008, 127: 275-283,
DOI
|
44 |
Monson RK, Rosenstiel TN, Forbis TA, Lipson DA, JaegerIII CH. Nitrogen and carbon storage in alpine plants. Integr Comp Biol, 2006, 46: 35-48,
DOI
|
45 |
Nakaji T, Fukami M, Dokiya Y, Izuta T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 2001, 15: 453-461,
DOI
|
46 |
Nehls U, Gohringer F, Wittulsky S, Dietz S. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol, 2010, 12: 292-301,
DOI
|
47 |
Norby RJ, Hanson PJ, O'Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng WX, Wullschleger SD, Gunderson CA, Edwards NT. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl, 2002, 12: 1261-1266
|
48 |
Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA, 2010, 107: 19368-19373,
DOI
|
49 |
Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, Mccarthy H, Hendrey G, Mcnulty SG. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 2001, 411: 469-472,
DOI
|
50 |
R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
|
51 |
Rothstein DE, Zak DR, Pregitzer KS, Curtis PS. Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO2 and soil nitrogen availability. Tree Physiol, 2000, 20: 265-270,
DOI
|
52 |
Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine?. Tree Physiol, 2012, 32: 764-775,
DOI
|
53 |
Smart D, Chatterton J, Bugbee B. The influence of elevated CO2 on nonstructural carbohydrate distribution and fructan accumulation in wheat canopies. Plant Cell Environ, 1994, 17: 435-442,
DOI
|
54 |
Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol, 2011, 62: 227-250,
DOI
|
55 |
Tissue DT, Griffin KL, Turnbull MH, Whitehead D. Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure. Tree Physiol, 2001, 21: 915-923,
DOI
|
56 |
Wang QK, Zhang WD, Sun T, Chen LC, Pang XY, Wang YP, Xiao FM. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest. Agr for Meteorol, 2017, 232: 66-73,
DOI
|
57 |
Wurth MK, Pelaez-Riedl S, Wright SJ, Korner C. Non-structural carbohydrate pools in a tropical forest. Oecologia, 2005, 143: 11-24,
DOI
|
58 |
Yang QP, Zhang WD, Li RS, Xu M, Wang SL. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees, 2016, 30: 1863-1871,
DOI
|
59 |
Zak DR, Pregitzer KS, King JS, Holmes WE. Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol, 2000, 147: 201-222,
DOI
|
60 |
Zha TS, Wang KY, Ryyppö A, Kellomäki S. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature. Tree Physiol, 2002, 22: 1241-1248,
DOI
|