1 |
Agrawal D, Jajoo A. Investigating primary sites of damage in photosystem II in response to high temperature. Indian J Plant Physiol, 2015, 20: 304-309,
DOI
|
2 |
Altman J, Fibich P, Santruckova H, Dolezal J, Stepanek P, Kopacek J, Hunova I, Oulehle F, Tumajer J, Cienciala E. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Sci Total Environ, 2017, 609: 506-516,
DOI
|
3 |
Augé RM, Green CD, Stodola AJW, Saxton AM, Olinick JB, Evans RM. Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in a natural habitat. New Phytol, 2000, 145: 483-500,
DOI
|
4 |
Barnes JD, Pfirrmann T, Steiner K, Lutz C, Busch U, Kuchenhoff H, Payer HD. Effects of elevated CO2, elevated O3 and potassium deficiency on Norway spruce (Picea abies (L) Karst.): seasonal changes in photosynthesis and non-structural carbohydrate content. Plant Cell Environ, 1995, 18: 1345-1457,
DOI
|
5 |
Bigras FJ. Selection of white spruce families in the context of climate change: heat tolerance. Tree Physiol, 2000, 20: 1227-1234,
DOI
|
6 |
Blattný T, Šťastný T. Prirodzené rozšírenie lesných drevín na Slovensku, 1959 SVTL, Bratislava, Slovakia4 Natural distribution of woody species in Slovakia
|
7 |
Brestic M, Zivcak M. Rout GR, Das AB. PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. Molecular stress physiology of plants, 2013 India Springer India 87-131,
DOI
|
8 |
Busch F, Hüner NPA, Ensminger I. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine. Plant Physiol, 2007, 143: 1242-1251,
DOI
|
9 |
Cannell MGR. Physiological basis of wood production: a review. Scand J for Res, 1989, 4: 459-490,
DOI
|
10 |
D’Odorico P, Besik A, Wong CYS, Isabel N, Ensminger I. High-throughput drone-based remote sensing reliably tracks phenology in thousands of conifer seedlings. New Phytol, 2020, 226: 1667-1681,
DOI
|
11 |
Day TA, Heckathorn SA, DeLucia EH. Limitations of photosynthesis in Pinus taeda L. (loblolly pine) at low soil temperatures. Plant Physiol, 1991, 96: 1246-1254,
DOI
|
12 |
Deligöz A, Bayar E, Genç M, Karatepe Y, Kirdar E, Cankara F. Seasonal and needle age-related variations in the biochemical characteristics of Pinus nigra subsp. pallasiana (Lamb.) Holmboe. J for Sci, 2018, 64: 379-386,
DOI
|
13 |
Ensminger I, Schmidt L, Lloyd J. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. New Phytol, 2008, 177: 428-442,
DOI
|
14 |
Faseela P, Sinisha AK, Brestič M, Puthur JT. Special issue in honour of Prof. Reto J. Strasser-Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica, 2020, 58: 293-300,
DOI
|
16 |
Fleischer P, Pichler V, Fleischer JP, Holko L, Máliš F, Gömöryová E, Cudlín P, Holeksa J, Michalová Z, Homolová Z, Škvarenina J, Střelcová K, Hlaváč P. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Clim Res, 2017, 73: 57-71,
DOI
|
17 |
Froux F, Ducrey M, Epron D, Dreyer E. Seasonal variations and acclimation potential of the thermostability of photochemistry in four Mediterranean conifers. Ann for Sci, 2004, 61: 235-241,
DOI
|
18 |
Gagne M, Minocha R, Long S, McCulloh K (2020) Species-specific combined effects of heatwaves, drought, and elevated (CO 2) on cellular metabolism in the foliage. Picea abies and Betula papyrifera (preprint). https://doi.org/10.22541/au.159714926.65470087
|
19 |
Gimenez C, Fereres E, Ruz C, Orgaz F. Water relations and gas exchange of olive trees: diurnal and seasonal patterns of leaf water potential, photosynthesis and stomatal conductance. Acta Hortic, 1997,
DOI
|
20 |
González de Andrés E, Blanco JA, Imbert JB, Guan BT, Lo Y, Castillo FJ. ENSO and NAO affect long-term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods. Glob Change Biol, 2019, 25: 3070-3090,
DOI
|
21 |
Guerrieri R, Belmecheri S, Ollinger SV, Asbjornsen H, Jennings K, Xiao J, Stocker BD, Martin M, Hollinger DY, Bracho-Garrillo R, Clark K, Dore S, Kolb T, Munger JW, Novick K, Richardson AD. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc NatL Acad Sci, 2019, 116: 16909-16914,
DOI
|
22 |
Guissé B, Srivastava A, Strasser RJ. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Archs Sci Geneve, 1995, 48(2): 147-160
|
24 |
Hartl-Meier C, Zang C, Dittmar C, Esper J, Göttlein A, Rothe A. Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim Res, 2014, 60: 119-132,
DOI
|
25 |
Hatfield JL, Dold C. Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci, 2019, 10: 103,
DOI
|
26 |
Havaux M, Dall’Osto L, Bassi R. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol, 2007, 145: 1506-1520,
DOI
|
27 |
Hikosaka K. Photosynthesis, chlorophyll fluorescence and photochemical reflectance index in photoinhibited leaves. Funct Plant Biol, 2021, 48: 815,
DOI
|
28 |
Huang W, Yang YJ, Hu H, Zhang SB. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species. J Photochem Photobiol B, 2016, 165: 71-79,
DOI
|
29 |
Húdoková H, Petrik P, Petek-Petrik A, Konôpková A, Leštianska A, Střelcová K, Kmeť J, Kurjak D. Heat-stress response of photosystem II in five ecologically important tree species of European temperate forests. Biologia, 2022,
DOI
|
30 |
Jamnická G, Fleischer P, Konôpková A, Pšidová E, Kučerová J, Kurjak D, Živčák M, Ditmarová L. Norway spruce (Picea abies L.) provenances use different physiological strategies to cope with water deficit. Forests, 2019, 10: 651,
DOI
|
31 |
Jamnická G, Konôpková A, Petrík P, Petek A, Húdoková H, Fleischer P, Homolová Z, Ježík M, Ditmarová Ľ. Physiological vitality of Norway spruce (Picea abies L.) stands along an altitudinal gradient in Tatra National Park. Cent Eur for J, 2020, 66: 227-242,
DOI
|
32 |
Janka E, Körner O, Rosenqvist E, Ottosen CO. High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant Physiol Biochem, 2013, 67: 87-94,
DOI
|
33 |
Jensen AM, Warren JM, Hanson PJ, Childs J, Wullschleger SD. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees. Ann Bot, 2015, 116: 821-832,
DOI
|
34 |
Karlický V, Kurasová I, Ptáčková B, Večeřová K, Urban O, Špunda V. Enhanced thermal stability of the thylakoid membranes from spruce. a comparison with selected angiosperms. Photosynth Res, 2016, 130: 357-371,
DOI
|
35 |
Katanić Z, Atić L, Dž F, Cesar V, Lepeduš H. PSII photochemistry in vegetative buds and needles of Norway spruce (Picea abies L. Karst.) probed by OJIP chlorophyll a fluorescence measurement. Acta Biol Hung, 2012, 63: 218-230,
DOI
|
36 |
Klughammer C, Schreiber U. Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl Notes, 2008, 1: 27-35
|
37 |
Koller S, Holland V, Brüggemann W. Special issue in honour of Prof. Reto J. Strasser-Seasonal monitoring of PSII functionality and relative chlorophyll content on a field site in two consecutive years: a case study of different oak species. Photosynthetica, 2020, 58: 379-390,
DOI
|
38 |
Konôpková A, Kurjak D, Kmeť J, Klumpp R, Longauer R, Ditmarová Ľ, Gömöry D. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees, 2018, 32: 73-86,
DOI
|
39 |
Korshykov I, Shevchuk N, Guseynova E. The changes of colouring and content of photosynthetic pigments in unevenaged needles of Picea pungens Engelm. in conditions of urban plantings. Plant Introduction, 2019, 81: 82-89
|
40 |
Kotakis C, Akhtar P, Zsiros O, Garab G, Lambrev PH. Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica, 2018, 56: 254-264,
DOI
|
41 |
Kovač Ž, Platt T, Ninčević Gladan Ž, Morović M, Sathyendranath S, Raitsos D, Grbec B, Matić F, Veža J. A 55-year time series station for primary production in the Adriatic Sea: data correction, extraction of photosynthesis parameters and regime shifts. Remote Sens, 2018, 10: 1460,
DOI
|
42 |
Krejza J, Cienciala E, Světlík J, Bellan M, Noyer E, Horáček P, Štěpánek P, Marek MV. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 2021, 35: 103-119,
DOI
|
44 |
Kunert N, Hajek P, Hietz P, Morris H, Rosner S, Tholen D. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biol, 2021,
DOI
|
45 |
Kurjak D, Konôpková A, Kmeť J, Macková M, Frýdl J, Živčák M, Palmroth S, Ditmarová Ľ, Gömöry D. Variation in the performance and thermostability of photosystem II in European beech (Fagus sylvatica L.) provenances is influenced more by acclimation than by adaptation. Eur J for Res, 2019, 138: 79-92,
DOI
|
46 |
Lazár D, Ilík P. High-temperature induced chlorophyll fluorescence changes in barley leaves comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. Plant Sci, 1997, 124: 159-164,
DOI
|
47 |
Lazár D, Pospíšil P. Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures. Eur Biophys J, 1999, 28: 468-477,
DOI
|
48 |
Lazár D, Pospíšil P, Nauš J. Decrease of fluorescence intensity after the K Step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to photosystem II. Photosynthetica, 1999, 37: 255-265,
DOI
|
49 |
Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol, 2014, 203: 94-109,
DOI
|
50 |
Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Methods in enzymology (Vol. 148, pp. 350-382). Academic Press
|
51 |
Linares JC, Camarero JJ. From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Change Biol, 2012, 18: 1000-1015,
DOI
|
93 |
Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian J Crop Sci 8:580–585
|
52 |
Magney TS, Bowling DR, Logan BA, Grossmann K, Stutz J, Blanken PD, Burns SP, Cheng R, Garcia MA, Kӧhler P, Lopez S, Parazoo NC, Raczka B, Schimel D, Frankenberg C. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc Natl Acad Sci, 2019, 116: 11640-11645,
DOI
|
53 |
Maslova TG, Mamushina NS, Sherstneva OA, Bubolo LS, Zubkova EK. Seasonal structural and functional changes in the photosynthetic apparatus of evergreen conifers. Russ J Plant Physiol, 2009, 56: 607-615,
DOI
|
54 |
Mathias JM, Thomas RB. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc Natl Acad Sci, 2021, 118,
DOI
|
55 |
Mathur S, Allakhverdiev SI, Jajoo A. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta BBA-Bioenerg, 2011, 1807: 22-29,
DOI
|
56 |
Mathur S, Agrawal D, Jajoo A. Photosynthesis: Response to high temperature stress. J Photochem Photobiol b, Biol, 2014, 137: 116-126,
DOI
|
57 |
Mehne-Jakobs B. Seasonal development of the photosynthetic performance of Norway spruce (Picea abies [L.] Karst.) under magnesium deficiency. Plant Soil, 1995, 168–169: 255-261,
DOI
|
58 |
Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry JP, Miller JR, Guanter L, Moreno J, Moya I, Berry JA, Frankenberg C, Zarco-Tejada PJ. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens Environ, 2019, 231,
DOI
|
59 |
Mukherjee S, Mishra A, Trenberth KE. Climate change and drought: a perspective on drought indices. Curr Clim Change Rep, 2018, 4: 145-163,
DOI
|
60 |
Murthy R, Zarnoch SJ, Dougherty PM. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide. Plant Cell Environ, 1997, 20: 558-568,
DOI
|
61 |
Navarro-Cerrillo RM, Sánchez-Salguero R, Herrera R, Ceacero Ruiz CJ, Moreno-Rojas JM, Manzanedo RD, López-Quintanilla J. Contrasting growth and water use efficiency after thinning in mixed Abies pinsapo–Pinus pinaster–Pinus sylvestris forests. J for Sci, 2016, 62: 53-64,
DOI
|
62 |
Neuwirth B, Rabbel I, Bendix J, Bogena HR, Thies B. The European heat wave 2018: the dendroecological response of oak and spruce in Western Germany. Forests, 2021, 12: 283,
DOI
|
63 |
Orlowsky B, Seneviratne SI. Global changes in extreme events: regional and seasonal dimension. Clim Change, 2012, 110: 669-696,
DOI
|
64 |
Petrova S, Todorova K, Dakova M, Mehmed E, Nikolov B, Denev I, Stratiev M, Georgiev G, Delchev A, Stamenov S, Firkova L, Gesheva N, Kadirova D, Velcheva I. Photosynthetic pigments as parameters/indicators of tree tolerance to urban environment (Plovdiv, Bulgaria). Ecol Balc, 2017, 9: 53-62
|
65 |
Pietrzykowski M, Woś B. Choudhary DK, Mishra A, Varma A. The impact of climate change on forest tree species dieback and changes in their distribution. Climate change and the microbiome soil biology, 2021 Cham Springer International Publishing 447-460,
DOI
|
66 |
Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Gerten D, Gosling SN, Grillakis M, Gudmundsson L, Hanasaki N, Kim H, Koutroulis A, Liu J, Papadimitriou L, Schewe J, Müller Schmied H, Stacke T, Telteu CE, Thiery W, Veldkamp T, Zhao F, Wada Y. Global terrestrial water storage and drought severity under climate change. Nat Clim Change, 2021, 11: 226-233,
DOI
|
67 |
Pollastri S, Tsonev T, Loreto F. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures. J Exp Bot, 2014, 65: 1565-1570,
DOI
|
68 |
Porcar-Castell A. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol Plant, 2011, 143: 139-153,
DOI
|
69 |
Raczka B, Porcar-Castell A, Magney T, Lee JE, Köhler P, Frankenberg C, Grossmann K, Logan BA, Stutz J, Blanken PD, Burns SP, Duarte H, Yang X, Lin JC, Bowling DR. Sustained nonphotochemical quenching shapes the seasonal pattern of solar-induced fluorescence at a high-elevation evergreen forest. J Geophys Res Biogeosciences, 2019, 124: 2005-2020,
DOI
|
70 |
Robinson DC, Wellburn AR. Seasonal changes in the pigments of Norway spruce, Picea abies (L.) Karst, and the influence of summer ozone exposures. New Phytol, 1991, 119: 251-259,
DOI
|
71 |
Saurer M, Siegwolf RTW, Schweingruber FH. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years: isotope discrimination in Northern Eurasia. Glob Change Biol, 2004, 10: 2109-2120,
DOI
|
72 |
Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C, Damm A, Gharun M, Grams TEE, Hauck M, Hajek P, Hartmann H, Hiltbrunner E, Hoch G, Holloway-Phillips M, Körner C, Larysch E, Lübbe T, Nelson DB, Rammig A, Rigling A, Rose L, Ruehr NK, Schumann K, Weiser F, Werner C, Wohlgemuth T, Zang CS, Kahmen A. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl Ecol, 2020, 45: 86-103,
DOI
|
73 |
Schurman JS, Trotsiuk V, Bače R, Čada V, Fraver S, Janda P, Kulakowski D, Labusova J, Mikoláš M, Nagel TA, Seidl R, Synek M, Svobodová K, Chaskovskyy O, Teodosiu M, Svoboda M. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob Change Biol, 2018, 24: 2169-2181,
DOI
|
74 |
Shabala S. Plant stress physiology, 2017 Wallingford, UK CAB International,
DOI
|
75 |
Silkina OV, Vinokurova RI. Seasonal dynamics of chlorophyll and microelement content in developing conifer needles of Abies sibirica and Picea abies. Russ J Plant Physiol, 2009, 56: 780-786,
DOI
|
76 |
Spiecker H (2000) Growth of Norway spruce (Picea abies [L.] Karst.) under changing environmental conditions in Europe. In: Klimo E, Hager H, Kulhavý J (Ed) Spruce monocultures in Central Europe—problems and prospects. EFI Proceedings. European Forest Institute, Joensuu, Finland, pp 11–26
|
77 |
Stirbet A, Lazár D, Kromdijk J. Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses?. Photosynthetica, 2018, 56: 86-104,
DOI
|
78 |
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (Ed) Chlorophyll a fluorescence: a signature of photosynthesis. Springer Netherlands, Dordrecht, pp.321–362. https://doi.org/10.1007/978-1-4020-3218-9_12
|
79 |
Szőllősi E, Oláh V, Kanalas P, Kis J, Fenyvesi A, Mészáros I. Seasonal variation of leaf ecophysiological traits within the canopy of Quercus petraea (Matt.) Liebl. trees. Acta Biol Hung, 2010, 61: 172-188,
DOI
|
80 |
Tomášková I, Pastierovič F, Krejzková A, Čepl J, Hradecký J. Norway spruce ecotypes distinguished by chlorophyll a fluorescence kinetics. Acta Physiol Plant, 2021, 43: 24,
DOI
|
92 |
Valadares J, Figueiredo de Paula N, Cesar de Paula R (2014) Physiological changes in eucalyptus hybrids under different irrigation regimes. Revista Ciencia Agronomica 45:805–814
|
81 |
Verhoeven A, Osmolak A, Morales P, Crow J. Seasonal changes in abundance and phosphorylation status of photosynthetic proteins in eastern white pine and balsam fir. Tree Physiol, 2009, 29: 361-374,
DOI
|
82 |
Vodnik D, Gogala N. Seasonal fluctuations of photosynthesis and its pigments in 1-year mycorrhized spruce seedlings. Mycorrhiza, 1994, 4: 277-281,
DOI
|
83 |
Voltas J, Aguilera M, Gutiérrez E, Shestakova TA. Shared drought responses among conifer species in the middle Siberian taiga are uncoupled from their contrasting water-use efficiency trajectories. Sci Total Environ, 2020, 720,
DOI
|
84 |
Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Hemming DL, Loader NJ, Robertson I. Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quat Sci Rev, 2004, 23: 803-810,
DOI
|
85 |
Waters ER, Vierling E. Plant small heat shock proteins—evolutionary and functional diversity. New Phytol, 2020, 227: 24-37,
DOI
|
86 |
Wu G, Liu X, Chen T, Xu G, Wang B, Kang H, Li C, Zeng X. The positive contribution of iWUE to the resilience of Schrenk spruce (Picea schrenkiana) to extreme drought in the western Tianshan Mountains, China. Acta Physiol Plant, 2020, 42: 168,
DOI
|
87 |
Yamane Y, Kashino Y, Koike H, Satoh K. Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res, 1997, 52: 57-64,
DOI
|
88 |
Zarter CR, Demmig-Adams B, Ebbert V, Adamska I, Adams WW. Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. New Phytol, 2006, 172: 283-292,
DOI
|
89 |
Zeltiņš P, Katrevičs J, Gailis A, Maaten T, Desaine I, Jansons A. Adaptation capacity of Norway spruce provenances in western Latvia. Forests, 2019, 10: 840,
DOI
|
90 |
Zhang Q, Ficklin DL, Manzoni S, Wang L, Way D, Phillips RP, Novick KA. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ Res Lett, 2019, 14,
DOI
|
91 |
Zhou L, Wang S, Chi Y, Li Q, Huang K, Yu Q. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China. Sci Rep, 2015, 5: 18254,
DOI
|