| 1 |
Adlard PG. Myth and reality in growth estimation. For Ecol Manag, 1995, 71(3): 171-176,
DOI
|
| 2 |
Beaver RA. Wilding N, Collins NM, Hammond PM, Webber JF. Insect-fungus relationships in the bark and ambrosia beetles. Insect-fungus interactions, 1989 London, UK Academic Press 121-143,
DOI
|
| 3 |
Bobiec A, Gutowski JM, Zub K, Pawlaczyk P, Laudenslayer WF (2005) The Afterlife of a Tree. WWF Poland, Warszawa, p 248.
|
| 4 |
Borden JH. Berryman AA. The striped ambrosia beetle. Dynamics of forest insect populations—patterns, causes, implications, 1988 New York Plenum Press 579-596,
DOI
|
| 5 |
Borkowski A. Regression equations for estimating populations of Tomicus piniperda (L.) on Scots pine (Pinus sylvestris L.). Forest Ecol Manag, 2019, 453: 117578,
DOI
|
| 6 |
Borkowski A, Podlaski R. Statistical evaluation of Ips typographus (L.) population density: a useful tool in protected areas and conservation-oriented forestry. Biodivers Conserv, 2011,
DOI
|
| 7 |
Borkowski A, Skrzecz I. Ecological segregation of bark beetles (Col., Curculionidae, Scolytinae) in Scots pine. Ecol Res, 2016, 31(1): 135-144,
DOI
|
| 8 |
Bouhot L, Lieutier F, Debouzie D. Spatial and temporal distribution of attacks by Tomicus piniperda L. and Ips sexdentatus Boern. (Col., Scolytidae) on Pinus sylvestris. J Appl Entomol, 1988, 106(1–5): 356-371,
DOI
|
| 9 |
Bradford MA, Veen GF, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, Crowther TW, De Long JR, Freschet GT, Kardol P, Manrubia-Freixa M, Maynard DS, Newman GS, Logtestijn RSP, Viketoft M, Wardle DA, Wieder WR, Wood SA, van der Putten WH. A test of the hierarchical model of litter decomposition. Nat Ecol Evol, 2017, 1(12): 1836-1845,
DOI
|
| 10 |
Bretfeld M, Speckman HN, Beverly DP, Ewers BE. Bayesian predictions of bark beetle attack and mortality of three conifer species during epidemic and endemic population stages. Front For Glob Chang, 2021, 4: 679104,
DOI
|
| 11 |
Bußler H, Schmidt O. Remarks on the taxonomy, distribution and ecology of Trypodendron laeve Eggers, 1939 (Coleoptera: Scolytidae). Nachrbl Bayer Entomol, 2008, 57: 62-65
|
| 12 |
Byers JA. Lieutier F, Day KR, Battisti A, Gregoire JC, Evans HF. Chemical ecology of bark beetles in a complex olfactory landscape. Bark and wood boring insects in living trees in Europe, a synthesis, 2004 Dordrecht, Boston, London Kluwer Academic Publishers 89-134
|
| 13 |
Caza CL (1993) Woody debris in the forests of British Columbia: a review of the literature and current research. Land management report, 78, B.C. Ministry of Forests, Research Branch, Victoria, p 115.
|
| 14 |
Chapman JA. The effect of attack by the ambrosia beetle Trypodendron lineatum (Olivier) on log attractiveness. Can Entomol, 1966, 98: 50-59,
DOI
|
| 15 |
Chong EKP, Zak SH. An introduction to optimization, 2001 New York Wiley 476
|
| 16 |
Cochran WG. Sampling techniques, 1977 New York Wiley 448
|
| 17 |
Duffy JE, Godwin CM, Cardinale BJ. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 2017, 549(7671): 261,
DOI
|
| 18 |
Eichenberg D, Pietsch K, Meister C, Ding WY, Yu MJ, Wirtch C. The effect of microclimate on wood decay is indirectly altered by tree species diversity in a litterbag study. J Plant Ecol, 2017, 10(1): 170-178,
DOI
|
| 19 |
Elkin CM, Reid ML. Shifts in breeding habitat selection behaviour in response to population density. Oikos, 2010, 119(7): 1070-1080,
DOI
|
| 20 |
Fargo WS, Coulson RN, Pulley PE, Pope DN, Kelley CL. Spatial and temporal patterns of within-tree colonization by Dendroctonus frontalis (Coleoptera: Scolytidae). Can Entomol, 1978, 110: 1213-1232,
DOI
|
| 21 |
|
| 22 |
Hanski I (2004) An ecological assessment of the need for forest protection in northern and Central Europe. In: Hanski I, Walsh M, (eds) How much, how to? ––Practical tools for forest conservation. Birdlife European Forest Task Force, Helsinki, pp 10–24.
|
| 23 |
Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaempfer GW, Cromack K, Cummins JR, Cummins KW. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res, 1986, 15: 133-302,
DOI
|
| 24 |
Inoue A. A model for the relationship between form-factors for stem volume and those for stem surface area in coniferous species. J For Res, 2006, 11(4): 289-294,
DOI
|
| 25 |
Instructions for Forest Protection in Poland (2012) CILP, Warszawa, p 259.
|
| 26 |
IPCC (2018) IPCC: Intergovernmental Panel on Climate Change. Summary for Policymakers In: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; Masson-Delmotte V, Zhai P, Pörtner H.-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR.
|
| 27 |
Jankowiak R, Strzałka B, Bilański P, Kacprzyk M, Lukášová K, Linnakoski R, Matwiejczuk S, Misztela M, Rossa R. Diversity of Ophiostomatales species associated with conifer-infesting beetles in the Western Carpathians. Eur J for Res, 2017, 136: 939-956,
DOI
|
| 28 |
Kahl T, Arnstadt T, Baber K, Bässler C, Bauhus J, Borken W, Buscot F, Floren A, Heibl C, Hessenmöller D, Hofrichter M, Hoppe B, Kellner H, Krüger D, Linsenmair KE, Matzner E, Otto O, Purahong W, Seilwinder C, Schulze ED, Wende B, Weisser WW, Gossner MM. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For Ecol Manage, 2017, 391: 86-95,
DOI
|
| 29 |
Keiser AD, Bradford MA. Climate masks decomposer influence in a cross-site litter decomposition study. Soil Biol Biochem, 2017, 107: 180-187,
DOI
|
| 30 |
Kirkendall LR, Faccoli M. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe. ZooKeys, 2010, 56: 227-251,
DOI
|
| 31 |
Kozak A, Kozak R. Does cross validation provide additional information in the evaluation of regression models?. Can J Forestry Res, 2003, 33: 976-987,
DOI
|
| 32 |
Krankina ON, Harmon ME, Griazkin AV. Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Can J Forestry Res, 1999, 29: 20-32,
DOI
|
| 33 |
Krehan H, Holzschuh C. Trypodendron laeve–Vorkommen in Österreich (Trypodendron laeve–occurrence in Austria). Forstschutz Aktuell, 1999, 23(24): 6-8 (in German)
|
| 34 |
Lehenberger M, Biedermann PH, Benz JP. Molecular identification and enzymatic profiling of Trypodendron (Curculionidae: Xyloterini) ambrosia beetle-associated fungi of the genus Phialophoropsis (Microascales: Ceratocystidaceae). Fung Ecol, 2019, 38: 89-97,
DOI
|
| 35 |
Lehenberger M, Benz JP, Müller J, Biedermann PH (2018) Trypodendron domesticum and Trypodendron lineatum (Curculionidae; Scolytinae) are vectors of xylobiont and sapro-xylobiont fungi. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie. http://www.dgaae.de ( in German)
|
| 36 |
Lieutier F, Långström B, Faccoli M. Vega FE, Hofstetter RW. The Genus Tomicus. Bark beetles: biology and ecology of native and invasive species, 2015 Amsterdam, The Netherlands Elsevier Academic Press 371-426,
DOI
|
| 37 |
Lindelöw Å, Risberg B, Sjödin K. Attraction during flight of scolytids and other bark- and wood-dwelling beetles to volatiles from fresh and stored spruce wood. Can J Forestry Res, 1992, 22(2): 224-228,
DOI
|
| 38 |
Lindgren BS. Ambrosia beetles. J For, 1990, 88: 8-11
|
| 39 |
Lukášová K, Knižek M, Holuša J, Čejka M, Kacprzyk M. Is the bark beetle Trypodendron laeve (Coleoptera: Curculionidae: Scolytinae) an alien pest in the Czech Republic and Poland?. Pol J Ecol, 2012, 4: 789-795
|
| 40 |
Mäkinen H, Hynynen J, Siitonen J, Sievänen R. Predicting the decomposition of Scots pine, Norway spruce, and Birch stems in Finland. Ecol Appl, 2006, 16(5): 1865-1879,
DOI
|
| 41 |
Marshall PL, Davis G, LeMay VM (2000) Using line intersect sampling for coarse woody debris. Forest research technical report, Vancouver Forest Region p 34.
|
| 42 |
Martikainen P. Flight period and ecology of Trypodendron proximum (Niijima) (Col, Scolytidae) in Finland. J Appl Entomol, 2000, 124(2): 57-62,
DOI
|
| 43 |
Martikainen P, Siitonen J, Kaila L, Punttila P. Intensity of forest management and bark beetles in non-epidemic conditions: a comparison between Finnish and Russian Karelia. J Appl Entomol, 1996, 120(1–5): 257-264,
DOI
|
| 44 |
Martikainen P, Siitonen J, Kaila L, Punttila P, Rauh J. Bark beetles (Coleoptera, Scolytidae) and associated beetle species in mature managed and old growth boreal forests in southern Finland. For Ecol Manage, 1999, 116(1–3): 233-245,
DOI
|
| 45 |
Mayers CG, McNew DL, Harrington TC, Roeper RA, Fraedrich SW, Biedermann PHW, Castrillo LA, Reed SE. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fung Biol, 2015, 119(11): 1075-1092,
DOI
|
| 46 |
Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J for Res, 2010, 129(6): 981-992,
DOI
|
| 47 |
|
| 48 |
Orbay L, McLean JA, Sauder BJ, Cottell PL. Economic losses resulting from ambrosia beetle infestation of sawlogs in coastal British Columbia. Canada Can J Forestry Res, 1994, 24(6): 1266-1276,
DOI
|
| 49 |
Pan Y, Lu Y, Chen P, Yu ZF, Zhang HH, Ye H, Zhao T. Ophiostomatales (Ascomycota) associated with Tomicus species in southwestern China with an emphasis on Ophiostoma canum. J Forestry Res, 2020, 31: 2549-2562,
DOI
|
| 50 |
Park J, Reid ML. Distribution of a bark beetle, Trypodendron lineatum, in a harvested landscape. For Ecol Manage, 2007, 242(2–3): 236-242,
DOI
|
| 51 |
Peng CH. Understanding the role of forest simulation models in sustainable forest management. Environ Impact Assess Rev, 2000, 20(4): 481-501,
DOI
|
| 52 |
Persson Y, Rimvydas V, Långström B, Öhrn P, Ihrmark K, Stenlid J. Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter. Microb Ecol, 2009, 58: 651-659,
DOI
|
| 53 |
Pietsch KA, Eichenberg D, Nadrowski K, Bauhus J, Buscot F, Purahong W, Wipfler B, Wubet T, Yu M, Wirth C. Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos, 2019, 128(5): 701-715,
DOI
|
| 54 |
Podlaski R, Borkowski A. Method for estimating density of Cryphalus piceae (Ratz.) brood galleries using a regression model. J Appl Entomol, 2009, 133: 402-409,
DOI
|
| 55 |
Rock J, Badeck FW, Harmon ME. Estimating decomposition rate constants for European tree species from literature sources. Eur J for Res, 2008, 127(4): 301-313,
DOI
|
| 56 |
Runnel K, Lõhmus A. Deadwood-rich managed forests provide insights into the old-forest association of wood-inhabiting fungi. Fungal Ecol, 2017, 27: 155-167,
DOI
|
| 57 |
Santaniello F, Djupström LB, Ranius T, Weslien J, Rudolphi J, Thor G. Large proportion of wood dependent lichens in boreal pine forest are confined toold hard wood. Biodivers Conserv, 2017, 26: 1295-1310,
DOI
|
| 58 |
Seber GAF, Wild CJ. Nonlinear regression, 2003 New York Wiley 768
|
| 59 |
Seibold S, Rammer W, Hothorn T, Rupert S, Ulyshen Michael D, Janina L, Cadotte MW, Lindenmayer DB, Adhikari YP, Aragon R, Bae S, Baldrian P, Varandi HB, Barlow J, Bassler C, Beauchene J, Berenguer E, Bergamin RS, Birkemoe T, Boros G, Brandl R, Brustel H, Burton PJ, Cakpo-Tossou YT, Castro J, Cateau E, Cobb TP, Farwig N, Fernandez RD, Firn J, Gan KS, Gonzalez G, Gossner MM, Habel JC, Hebert C, Heibl C, Heikkala O, Hemp A, Hemp C, Hjalten J, Hotes S, Kouki J, Lachat T, Liu J, Liu Y, Luo YH, Macandog DM, Martina PE, Mukul SA, Nachin B, Nisbet K, O'Halloran J, Oxbrough A, Pandey JN, Pavlicek T, Pawson SM, Rakotondranary JS, Ramanamanjato JB, Rossi L, Schmidl J, Schulze M, Seaton S, Stone MJ, Stork NE, Suran B, Sverdrup-Thygeson A, Thorn S, Thyagarajan G, Wardlaw TJ, Weisser WW, Yoon S, Zhang NL, Muller J. The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597(7874): 7,
DOI
|
| 60 |
Siitonen J, Punttila P, Koskela M (1999) Effects of local and regional host-tree density on saproxylic beetle assemblages on dead pines. Habitat Loss: Ecological, Evolutionary and Genetic Consequences. Helsinki, 7-12 September 1999. Organized by the Spatial Ecology Research Programme at the Division of Population Biology, Department of Ecology and Systematics, University of Helsinki
|
| 61 |
Soares P, Tome M, Skovsgaard JP, Vanclay JV. Evaluating a growth model for forest management using continuous forest inventory data. For Ecol Manage, 1995, 71(3): 251-265,
DOI
|
| 62 |
Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research, 2012 New York Freeman and Co 915
|
| 63 |
Stockland J, Siitonen J, Jonsson B. Biodiversity in dead wood, 2012 Cambridge University Press,
DOI
|
| 64 |
Szujecki A. Ecology of forest insects, 1987 Netherlands Springer 602
|
| 65 |
Thompson SK. Sampling, 2012 New York p Wiley 472,
DOI
|
| 66 |
Tuomi M, Laiho R, Repo A, Liski J. Wood decomposition model for boreal forests. Ecol Model, 2011, 222(3): 709-718,
DOI
|
| 67 |
Ulyshen MD, Šobotník J. Ulyschen MD. An introduction to the diversity, ecology, and conservationof saproxylic insects. Saproxylic insects, 2018 Hamburg, Germany Springer 1-50,
DOI
|
| 68 |
Ulyshen MD, Wagner TL. Quantifying arthropod contributions to wood decay. Methods Ecol Evol, 2013, 4(4): 345-352,
DOI
|
| 69 |
Ulyshen MD, Diehl SV, Jeremic D. Termites and flooding affect microbial communities in decomposing wood. Int Biodeter Biodegrad, 2016, 115: 83-89,
DOI
|
| 70 |
Vehkaoja M, Nummi P, Rikkinen J. Beavers promote calicioid diversity inboreal forest landscapes. Biodivers Conserv, 2016, 26: 579-591,
DOI
|
| 71 |
Wang HK, Wu CS, Liu JP, Chen Q, Li C, Shu CJ, Zhang Y, Liu YQ. Changes in soil microbial communities induced by warming and N deposition accelerate the CO2 emissions of coarse woody debris. J Forestry Res (online), 2022,
DOI
|
| 72 |
Warren WG, Olsen PF. A line transect technique for assessing logging waste. For Scie, 1964, 10: 267-276
|
| 73 |
Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species?. Ecol Let, 2009, 12(1): 45-56,
DOI
|
| 74 |
Witkowski R, Załuska MT, Buchholz L, Mazur A. Nowe dane o występowaniu Trypodendron laeve Eggers, 1939 (Coleoptera: Curculionidae, Scolytinae) w Polsce (New data on the occurrence of Trypodendron laeve Eggers, 1939 (Coleoptera: Curculionidae, Scolytinae) in Poland). Acta Sci Pol Silv Colendar Rat Ind Lignar, 2015, 1: 81-86 (in Polish)
|
| 75 |
Wood SL (1982) The bark and Ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, 6, Brigham Young University, p1359
|
| 76 |
Zhou L, Dai LM, Gu HY, Zhong L. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. J Forestry Res, 2007, 18(1): 48-54,
DOI
|
| 77 |
Zolubas P, Negron J, Munson AS. Modelling spruce bark beetle infestation probability. Baltic for, 2009, 1: 23-27
|
| 78 |
Zuo J, Fonck M, van Hal J, Cornelissen JHC, Berg MP. Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment. Soil Biol Biochem, 2014, 78: 288-297,
DOI
|