1 |
Ahmed HM. Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species. Nat Prod Res, 2017, 32(6): 714-718,
DOI
|
2 |
Ahmed R, Hoque ATMR, Hossain MK. Allelopathy effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops. J for Res, 2008, 19(1): 19-24,
DOI
|
3 |
Baetz U, Martinoia E. Root exudates: the hidden part of plant defense. Trends Plant Sci, 2014, 19(2): 90-98,
DOI
|
4 |
Bai YX, Wang G, Cheng YD, Shi PY, Yang CC, Yang HW, Xu ZL. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acid. Sci Rep, 2019, 9: 12499,
DOI
|
5 |
Baziramakenga R, Simard RR, Leroux GD. Effects of benzoic and cinnamic acids on growth, mineral compounds and chlorophyll content of soybean. J Chem Ecol, 1994, 20(11): 2821-2833,
DOI
|
6 |
Baziramakenga R, Leroux GD, Simard RR. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J Chem Ecol, 1995, 21(9): 1271-1285,
DOI
|
7 |
Bi BY, Yuan Y, Zhang H, Wu ZH, Wang Y, Han FP. Rhizosphere soil metabolites mediated microbial community 0063hanges of Pinus sylvestris var mongolica across stand ages in the Mu Us Desert. Appl Soil Ecol, 2022, 169: 104222,
DOI
|
8 |
Bini D, Santos CAD, Bouillet JP, Goncalves JLDM, Cardoso EJBN. Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol, 2013, 63: 57-66,
DOI
|
9 |
Blum U. Plant-plant allelopathic interactions II: laboratory bioassays for water-soluble compounds with an emphasis on phenolic acids, 2014 Cham Springer 5-7,
DOI
|
10 |
Blum U, Shafer SR. Microbial populations and phenolic acids in soil. Soil Biol Biochem, 1988, 20(6): 793-800,
DOI
|
11 |
Blum U, Shafer SR, Lehman ME. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Crit Rev Plant Sci, 1999, 18(5): 673-693,
DOI
|
12 |
Boege K, Marquis RJ. Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol, 2005, 20(8): 441-448,
DOI
|
13 |
Boelter CR, Zartman CE, Fonseca CR. Exotic tree monocultures play a limited role in the conservation of Atlantic Forest epiphytes. Biodivers Conserv, 2011, 20: 1255-1272,
DOI
|
14 |
Bonner MTL, Herbohn J, Gregorio N, Pasa A, Avela MS, Solano C, Moreno MOM, Almendras-Ferraren A, Wills J, Shoo LP, Schmidt S. Soil organic carbon recovery in tropical tree plantations may depend on restoration of soil microbial composition and function. Geoderma, 2019, 353(1): 70-80,
DOI
|
15 |
Carvalho FP, Melo CAD, Machado MS, Dias DCFS, Alvarenga EM. The allelopathic effect of Eucalyptus leaf extract on grass forage seed. Planta Daninha, 2015, 33(2): 193-201,
DOI
|
16 |
Chapuis-Lardy L, Contour-Ansel D, Bernhard-Reversat F. High-performance liquid chromatography of water-soluble phenolics in leaf litter of three Eucalyptus hybrids (Congo). Plant Sci, 2002, 163(2): 217-222,
DOI
|
17 |
Chen LC, Wang SL. Preliminary study of allelopathy of root exudates of Chinese fir. Acta Ecol Sin, 2003, 23(2): 393-398,
DOI
|
18 |
Chen LC, Liao LP, Xiao FM. Effects of vanillin and P-hydroxybenzoic acid on physiological characteristics of Chinese fir seedlings. Chin J Appl Ecol, 2002, 13(10): 1291-1294 (in Chinese)
|
19 |
Chen FL, Zheng H, Zhang K, Quyang ZY, Li HL, Wu B, Shi Q. Soil microbial community structure and function responses to successive planting of Eucalyptus. J Environ Sci, 2013, 25(10): 2102-2111,
DOI
|
20 |
Chen FL, Zheng H, Zhang K, Quyang ZY, Lan J, Li HL, Shi Q. Changes in soil microbial community structure and metabolic activity following conversion from native Pinus massoniana plantations to exotic Eucalyptus plantations. For Ecol Manage, 2013, 291: 65-72,
DOI
|
21 |
Chu CJ, Mortimer PE, Wang HC, Wang YF, Liu XB, Yu SX. Allelopathic effects of Eucalyptus on native and introduced tree species. For Ecol Manage, 2014, 323: 79-84,
DOI
|
22 |
DA Inderjit W, Karban R, Callaway RM. The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol, 2011, 26(12): 655-662,
DOI
|
23 |
Delgado-Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanai Y, Liu YR, Hamonts K, Jeffries TC, Singh BK. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol Monogr, 2016, 86(3): 373-390,
DOI
|
24 |
Ehlers BK. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species. PLoS ONE, 2011, 6(11): e26321,
DOI
|
25 |
El-Soud WA, Hegab MM, AbdElgawad H, Zinta G, Asard H. Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol Bioch, 2013, 71: 173-183,
DOI
|
26 |
Fernandez C, Monnier Y, Ormeño E, Baldy V, Greff S, Pasqualini V, Mévy J, Bousquet-Mélou A. Variations in allelochemical composition of leachates of different organs and maturity stages of Pinus halepensis. J Chem Ecol, 2009, 35(8): 970-979,
DOI
|
27 |
Gong C, Tan QY, Liu GB, Xu MX. Impacts of tree mixtures on understory plant diversity in China. For Ecol Manage, 2021, 498: 119545,
DOI
|
28 |
Hättenschwiler S, Vitousek PM. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol, 2000, 15(6): 238-243,
DOI
|
29 |
He H, Song QM, Wang YF, Yu SX. Phytotoxic effects of volatile organic compounds in soil water taken from a Eucalyptus urophylla plantation. Plant Soil, 2014, 377(1–2): 203-215,
DOI
|
30 |
He SL, Wang SQ, Wang QY, Zhang CY, Zhang YM, Liu TY, Yang SX, Kuang Y, Zhang YX, Han JX, Qin JC. Allelochemicals as growth regulators: a review. Allelopathy J, 2019, 48(1): 15-26,
DOI
|
31 |
Inderjit DSO. Ecophysiological aspects of allelopathy. Planta, 2003, 217(4): 529-539,
DOI
|
32 |
Jacoby RP, Koprivova A, Kopriva S. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J Exp Bot, 2021, 72(1): 57-69,
DOI
|
33 |
Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, Wang P. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun, 2018, 9: 3867,
DOI
|
34 |
Kong CH, Hu F (2001) Allelopathy of plants and its application. Beijing: China Agriculture Press, pp 153‒172 (in Chinese)
|
35 |
Lamarque LJ, Delzon S, Lortie CJ. Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biol Invasions, 2011, 13: 1969-1989,
DOI
|
36 |
Liao KB, Yang M, Gao HD, Chen F. Allelopathy effects of phenolic acids on the growth and photosynthetic characteristics of Eucalyptus grandis × Eucalyptus urophylla seedlings. Allelopathy J, 2020, 51(2): 221-236,
DOI
|
37 |
Liu S, Qin FC, Yu SX. Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals. Appl Soil Ecol, 2018, 127: 1-7,
DOI
|
38 |
Lorenzo P, Pereira CS, Rodríguez-Echeverría S. Differential impact on soil microbes of allelopathic compounds released by the invasive Acacia dealbata Link. Soil Biol Biochem, 2013, 57: 156-163,
DOI
|
39 |
Massalha H, Korenblum E, Tholl D, Aharoni A. Small molecules belowground: the role of specialized metabolites in the rhizosphere. Plant J, 2017, 90(4): 788-807,
DOI
|
40 |
Metlen KL, Aschehoug ET, Callaway RM. Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant Cell Environ, 2009, 32(6): 641-653,
DOI
|
41 |
Molina A, Reigosa MJ, Carballeira A. Release of allelochemical agents from litter, throughfall, and topsoil in plantations of Eucalyptus globulus Labill in Spain. J Chem Ecol, 1991, 17(1): 147-160,
DOI
|
42 |
Qin FC, Liu S, Yu SX. Effects of allelopathy and competition for water and nutrients on survival and growth of tree species in Eucalyptus urophylla plantations. For Ecol Manage, 2018, 424: 387-395,
DOI
|
43 |
Reigosa MJ, Pazos-Malvido E. Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol, 2007, 33(7): 1456-1466,
DOI
|
44 |
Rice EL. Allelopathy, 1984 2 FL Academic Press, Orlando
|
45 |
Santos SAO, Vilela C, Freire CSR, Neto CP, Silvestre AJD. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J Chromatogr B, 2013, 938: 65-74,
DOI
|
46 |
Segesso L, Carrera AL, Bertiller MB, Cisneros HS. Soluble phenolics extracted from Larrea divaricata leaves modulate soil microbial activity and perennial grass establishment in arid ecosystems of the Patagonian Monte. Argentina Plant Ecol, 2019, 220(4–5): 441-456,
DOI
|
47 |
Singh AK, Singla P. Root phenolics profile modulates microbial ecology of rhizosphere. Plant phenolic in sustainable agriculture, 2020 New York Springer 555-578,
DOI
|
48 |
Stefano AD, Blazier MA, Comer CE, Dean TJ, Wigley TB. Understory vegetation richness and diversity of Eucalyptus benthamii and Pinus elliottii plantations in the Midsouth US. For Sci, 2020, 66(1): 66-81,
DOI
|
49 |
Teixeira D, Carrilho M, Silva M, Nunes M, Vieira ML, Novo MT, Santos-Reis M, Rosalino LM. Mediterranean Eucalyptus plantations affect small mammal ectoparasites abundance but not individual body condition. Ecol Res, 2019, 34(3): 415-427,
DOI
|
50 |
Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J, 2018, 12(4): 1072-1083,
DOI
|
51 |
Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudates and rhizosphere biology. Plant Physiol, 2003, 132(1): 44-51,
DOI
|
52 |
Wam HK, Stolter C, Nybakken L. Correction to: Compositional changes in foliage phenolics with plant age, a natural experiment in boreal forests. J Chem Ecol, 2017, 43(10): 1031,
DOI
|
53 |
Wang XL, Zhao J, Wu JP, Chen H, Lin YB, Zhou LX, Fu SL. Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China. For Ecol Manage, 2011, 261(6): 1053-1060,
DOI
|
54 |
Wang B, Guo XW, Li K, Han X, Xu SJ, Liu ZD, Guo YS, Xie HG. Effects of salicylic acid on grape plants and the soil microbial community. Allelopathy J, 2015, 36(1): 49-61
|
55 |
Wang CZ, Zhang DJ, Yu JL, Tang ZQ, Zhang J. Soil microbial community diversity and composition across a range of Eucalyptus grandis plantations of different ages. Int J Agric Biol, 2019, 21(3): 527-537,
DOI
|
56 |
Wei LP, Archaux F, Hulin F, Bilger I, Gosselin F. Stand attributes or soil micro-environment exert greater influence than management type on understory plant diversity in even-aged oak high forests. For Ecol Manage, 2020, 460: 117897,
DOI
|
57 |
Wen YG, Ye D, Chen F, Liu SR, Liang HW. The changes of understory plant diversity in continuous cropping system of Eucalyptus plantations. South China J for Res, 2010, 15(4): 252-258,
DOI
|
58 |
Wu JP, Fan HB, Liu WF, Huang GM, Tang JF, Zeng RJ, Huang J, Liu ZF. Should exotic Eucalyptus be planted in subtropical China: insights from understory plant diversity in two contrasting Eucalyptus chronosequences. Environ Manage, 2015, 56: 1244-1251,
DOI
|
59 |
Xia ZC, Kong CH, Chen LC, Wang SL. Allelochemical-mediated soil microbial community in long-term monospecific Chinese fir forest plantations. Appl Soil Ecol, 2015, 96: 52-59,
DOI
|
60 |
Xia ZC, He Y, Yu L, Li ZJ, Korpelainen H, Li CY. Revealing interactions between root phenolic metabolomes and rhizosphere bacterial communities in Populus euphratica plantations. Biol Fert Soil, 2021, 57: 421-434,
DOI
|
61 |
Xia ZC, He Y, Korpelainen H, Niinemets U, Li CY. Sex-specific interactions shape root phenolics and rhizosphere microbial communities in Populus cathayana. For Ecol Manage, 2022, 504: 119857,
DOI
|
62 |
Xu YX, Du AP, Wang ZC, Zhu WK, Li C, Wu LC. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. For Ecol Manage, 2020, 456: 117683,
DOI
|
63 |
Zhang CL, Fu SL. Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species. For Ecol Manage, 2009, 258(7): 1391-1396,
DOI
|
64 |
Zhang Y, Gu M, Xia XJ, Shi K, Zhou YH, Yu JQ. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J Chem Ecol, 2009, 35(6): 679-688,
DOI
|
65 |
Zhang DJ, Zhang J, Yang WQ, Wu FZ. Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecol Res, 2010, 25(1): 13-23,
DOI
|
66 |
Zhang DJ, Zhang J, Yang WQ, Wu FZ, Huang YM. Plant and soil seed bank diversity across a range of Eucalyptus grandis plantations afforested on arable lands. Plant Soil, 2014, 376(1–2): 307-325,
DOI
|
67 |
Zhang CL, Li XW, Chen YQ, Zhao J, Wan SZ, Lin YB, Fu SL. Effects of Eucalyptus litter and roots on the establishment of native tree species in Eucalyptus plantations in South China. For Ecol Manage, 2016, 375: 76-83,
DOI
|
68 |
Zhang ZJ, Liu YJ, Yuan L, Weber E, Kleunen MV. Effects of allelopathy on plant performance: a meta-analysis. Ecol Lett, 2021, 24: 348-362,
DOI
|
69 |
Zhang DJ, Li JJ, Huang YM, Gao S, Zhang J. Root-soil facilitation in mixed Eucalyptus grandis plantations including nitrogen-fixing species. For Ecol Manage, 2022, 516: 120215,
DOI
|
70 |
Zhang J, Yang WQ (2008) Ecosystem researches on Eucalypt (Eucalyptus grandis) short-term managed plantation. Cheng Du Sichuan Science and Technology Press, pp 5‒9 (In Chinese)
|