1 |
Ali A, Xu MS, Zhao YT, Zhang QQ, Zhou LL, Yang XD, Yan ER. Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fenn (Hels), 2015, 49(4): 1275,
DOI
|
2 |
Bastin JF, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW. The global tree restoration potential. Science, 2019, 365(6448): 76-79,
DOI
|
3 |
Bond-Lamberty B, Wang C, Gower ST. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can J for Res, 2002, 32(8): 1441-1450,
DOI
|
4 |
Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol, 2015, 20(10): 3177-3190,
DOI
|
5 |
Cook-Patton SC, Leavitt SM, Gibbs D, Harris NL, Lister K, Anderson-Teixeira KJ, Briggs RD, Chazdon RL, Crowther TW, Ellis PW, Griscom HP, Herrmann V, Holl KD, Houghton RA, Larrosa C, Lomax G, Lucas R, Madsen P, Malhi Y, Paquette A, Parker JD, Paul K, Routh D, Roxburgh S, Saatchi S, van den Hoogen J, Walker WS, Wheeler CE, Wood SA, Xu L, Griscom BW. Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585(7826): 545-550,
DOI
|
6 |
Dong LH, Li FR, Jia WW, Liu FX, Wang HZ. Compatible biomass models for main tree species with measurement error in Heilongjiang Province of Northeast China. Chin J Appl Ecol, 2011, 22(10): 2653-2661,
DOI
|
7 |
Dong LH, Zhang LJ, Li FR. Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees, 2015, 29(4): 1149-1163,
DOI
|
8 |
Duncanson LI, Dubayah RO, Enquist BJ. Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States. Glob Ecol Biogeogr, 2015, 24(12): 1465-1475,
DOI
|
9 |
Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Mendoza AM, Lopez-Gonzalez G, Banin L, Salim KA, Affum-Baffoe K, AlexiadesAlmeida MS, Amaral I, Andrade A, Arag˜ao LEOC, Murakami AA, Arets WJMM, Arroyo L, Aymard CGA, Baker TR, B´anki OS, Berry NJ, Cardozo N, Chave J, Comiskey JA, Alvarez E, de Oliveira A, di Fiore A, Djagbletey G, Domingues TF, Erwin TL, Fearnside PM, Franca MB, Freitas MA, Higuchi N, Honorio CE, Iida Y, van Jim´enezKassimKilleenLauranceLovettMalhiMarimonMarimon-JrLenzaMarshallMendozaMetcalfeMitchardNeillNelsonNilusNogueiraParadaPehCruzPe˜nuelaPitmanPrietoQuesadaRam´ırezRam´ırez-AnguloReitsmaRudasSaizSalom˜aoSchwarzSilvaSilva-EspejoSilveiraSonk´eStroppTaedoumgTanSteegeTerborghTorello-RaventosvanderHeijden EARTJWFJCYBSBHEARCDJETADABWREMAKSHAPMCNCAACAFHJMAGRPMNJEMBJHESHJM. Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9(8): 3381-3403,
DOI
|
10 |
Forrester DI, Tachauer IHH, Annighoefer P, Barbeito I, Pretzsch H, Ruiz-Peinado R, Stark H, Vacchiano G, Zlatanov T, Chakraborty T, Saha S, Sileshi GW. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For Ecol Manage, 2017, 396: 160-175,
DOI
|
11 |
Gonzalez-Akre E, Piponiot C, Lepore M, Herrmann V, Lutz JA, Baltzer JL, Dick CW, Gilbert GS, He FL, Heym HAI, Jansen PA, Johnson DJ, Knapp N, Kral K, Lin DM, Malhi Y, McMahon SM, Myers JA, Orwig D, Rodriguez-Hernandez DI, Russo SE, Shue J, Wang XG, Wolf A, Yang TH, Davies SJ, Anderson-Teixeira KJ. Allodb: an R package for biomass estimation at globally distributed extratropical forest plots. Methods Ecol Evol, 2021, 13(2): 330-338,
DOI
|
12 |
Goodman RC, Phillips OL, Baker TR. The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl, 2014, 24(4): 680-698,
DOI
|
13 |
Gower ST, Kucharik CJ, Norman JM. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens Environ, 1999, 70(1): 29-51,
DOI
|
14 |
He HJ, Zhang CY, Zhao XH, Fousseni F, Wang JS, Dai HJ, Yang S, Zuo Q. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests. Northeast China Plos One, 2018, 13(1): e0186226,
DOI
|
15 |
Li XN, Guo QX, Wang XC, Zheng HF. Allometry of understory tree species in a natural secondary forest in northeast China. Sci Silvae Sin, 2010, 46(8): 22-32,
DOI
|
16 |
Liu F, Wang CK, Wang XC, Zhang JS, Zhang Z, Wang JJ. Spatial patterns of biomass in the temperate broadleaved deciduous forest within the fetch of the Maoershan flux tower. Acta Ecol Sin, 2016, 36(20): 6506-6519,
DOI
|
17 |
MacFarlane DW. A generalized tree component biomass model derived from principles of variable allometry. For Ecol Manage, 2015, 354: 43-55,
DOI
|
18 |
Mosseler A, Major JE, Labrecque M, Larocque GR. Allometric relationships in coppice biomass production for two North American willows (Salix spp.) across three different sites. For Ecol Manage, 2014, 320: 190-196,
DOI
|
19 |
Ploton P, Barbier N, Momo ST, Réjou-Méchain M, Bosela FB, Chuyong G, Dauby G. Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences, 2016, 13(5): 1571-1585,
DOI
|
20 |
Pugha TAM, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L. Role of forest regrowth in global carbon sink dynamics. PNAS, 2019, 116(10): 4382-4387,
DOI
|
21 |
Reichstein M, Carvalhais N. Aspects of forest biomass in the earth system: its role and major unknowns. Surv Geophys, 2019, 40: 693-707,
DOI
|
22 |
Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel H, Nouvellon Y. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manage, 2005, 205(1–3): 199-214,
DOI
|
23 |
Sileshi GW. A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manage, 2014, 329: 237-254,
DOI
|
24 |
Sun XF, Liu F, Zhang QZ, Li YC, Zhang LF, Wang J, Zhang HY, Wang CK, Wang XC. Biotic and climatic controls on the interannual variation in canopy litterfall of a deciduous broad-leaved forest. Agric for Meteorol, 2021, 307: 108483,
DOI
|
25 |
Suzuki SN. Acceleration and deceleration of aboveground biomass accumulation rate in a temperate forest in central Japan. For Ecol Manage, 2021, 479: 118550,
DOI
|
26 |
van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. For Ecol Manage, 2011, 262(8): 1648-1657,
DOI
|
27 |
Vorster AG, Evangelista PH, Stovall AEL, Ex S. Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations. Carbon Balance Manag, 2020, 15(1): 8,
DOI
|
28 |
Wang CK. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For Ecol Manage, 2006, 222(1–3): 9-16,
DOI
|
29 |
Wang XP, Ouyang S, Sun JX, Fang JY. Forest biomass patterns across northeast China are strongly shaped by forest height. For Ecol Manage, 2013, 293: 149-160,
DOI
|
30 |
Wang XW, Zhao DH, Liu GF, Yang CJ, Teskey RO. Additive tree biomass equations for Betula platyphylla Suk. plantations in Northeast China. Ann For Sci, 2018, 75(2): 60,
DOI
|
31 |
Xu YZ, Zhang JX, Franklin SB, Liang JY, Ding P, Luo YQ, Lu ZJ, Bao DC, Jiang MX. Improving allometry models to estimate the above- and belowground biomass of subtropical forest. China Ecosphere, 2015, 6(12): 289,
DOI
|
32 |
Yang H, Ciais P, Santoro M, Huang YY, Li W, Wang YL, Bastos A, Goll D, Arneth A, Anthoni P, Arora VK, Friedlingstein P, Harverd V, Joetzjer E, Kautz M, Lienert S, Nabel JEMS, O’Sullivan M, Sitch S, Vuichard N, Wiltshire A, Zhu D. Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation–based estimates. Glob Chang Biol, 2020, 26(7): 3997-4012,
DOI
|
33 |
Yao YT, Piao SL, Wang T. Future biomass carbon sequestration capacity of Chinese forests. Sci Bull (beijing), 2018, 63(17): 1108-1117,
DOI
|
34 |
Zeng HQ, Liu QJ, Feng ZW, Ma ZQ. Biomass equations for four shrub species in subtropical China. J for Res, 2010, 15(2): 83-90,
DOI
|
35 |
Zhou XH, Brandle JR, Schoeneberger MM, Awada T. Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: shelterbelt-grown Russian-olive. Ecol Modell, 2007, 202(3–4): 311-323,
DOI
|
36 |
Zhou XH, Schoeneberger MM, Brandle JR, Awada TN, Chu JM, Martin DL, Li JH, Li YQ, Mize CW. Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land. Forest Sci, 2015, 61(1): 144-161,
DOI
|
37 |
Zianis D, Mencuccini M. On simplifying allometric analyses of forest biomass. For Ecol Manage, 2004, 187(2–3): 311-332,
DOI
|