Integrative Biology Journals

JOURNAL OF FORESTRY RESEARCH ›› 2023, Vol. 34 ›› Issue (1): 77-86.DOI: 10.1007/s11676-022-01566-2

• Original Paper • Previous Articles     Next Articles

Interannual dynamics of stemwood nonstructural carbohydrates in temperate forest trees surrounding drought

Meghan J. Blumstein1,2, Morgan E. Furze1,3,b   

  1. 1 Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, 02138, Cambridge, MA, USA
    2 Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Room 1-290, 02139, Cambridge, MA, USA
    3 Department of Botany and Plant Pathology, Department of Forestry and Natural Resources, Purdue University, 915 W State Street, 47907, West Lafayette, IN, USA
  • Received:2022-06-23 Accepted:2022-10-14 Online:2024-10-16
  • Contact: Morgan E. Furze

Abstract:

Interactions between water and carbon dynamics underlie drought-related tree mortality. While whole-tree water relations have been shown to play a key role in the response to and recovery from drought, the role of nonstructural carbohydrates (NSC) and how their storage and allocation changes surrounding drought events deserves further attention and is critical for understanding tree survival. Here, we quantified in situ NSC responses of temperate forest trees to the 2016 drought in the northeastern United States. Sugar and starch concentrations were measured in the stemwood of five tree species from 2014 to 2019, which allowed us to monitor NSCs in relation to climatic conditions before, during, and after the natural drought. We found that immediately following the drought, measured stemwood NSC concentrations decreased. However, NSC concentrations rebounded quickly within three years. Notably, trees allocated proportionally more to starch than to sugars following the 2016 drought. In winter 2017, starch comprised 45% of total stemwood stores, whereas starch made up only 1–2% in other years. Further, we modeled and assessed the climatic drivers of total NSC concentrations in the stem. Variation in total NSC concentrations was significantly predicted by the previous year’s temperature, precipitation, and standardized precipitation-evapotranspiration index (SPEI), with stemwood concentrations decreasing following hotter, drier periods and increasing following cooler, wetter periods. Overall, our work provides insight into the climatic drivers of NSC storage and highlights the important role that a tree’s carbon economy may play in its response and recovery to environmental stress.

Key words: Drought, Nonstructural carbohydrates, Starch metabolism, Forest trees