1 |
Adams HD, Germino MJ, Breshears DD, Barron-Gafford GA, Guardiola-Claramonte M, Zou CB, Huxman TE. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol, 2013, 197: 1142-1151,
DOI
|
2 |
Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin JM, Love DM, Macalady AK, Martínez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FI, Plaut JA, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA, McDowell NG. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol, 2017, 1: 1285-1291,
DOI
|
3 |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage, 2010, 259: 660-684,
DOI
|
4 |
Aloni R, Raviv A, Peterson CA. The role of auxin in the removal of dormancy callose and resumption of phloem activity in Vitis vinifera. Can J Bot, 1991, 69: 1825-1832,
DOI
|
5 |
Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci, 2012, 109: 233-237,
DOI
|
6 |
Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB. Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol, 2013, 19: 1188-1196,
DOI
|
7 |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 2015, 349: 528-532,
DOI
|
8 |
Barker Plotkin A, Blumstein M, Laflower D, Pasquarella VJ, Chandler JL, Elkinton JS, Thompson JR. Defoliated trees die below a critical threshold of stored carbon. Funct Ecol, 2021, 35: 2156-2167,
DOI
|
9 |
Blumstein M, Richardson A, Weston D, Zhang J, Muchero W, Hopkins R. A new perspective on ecological prediction reveals limits to climate adaptation in a temperate tree species. Curr Biol, 2020, 30: 1447-1453,
DOI
|
10 |
Boose E, Gould E (2019) Harvard Forest Climate Data since 1964. Harvard Forest Data Archive. HF300
|
11 |
Bowen MR, Hoad GV. Inhibitor content of phloem and xylem sap obtained from willow (Salix viminalis L.) entering dormancy. Planta, 1968, 81: 64-70,
DOI
|
12 |
Bréda N, Huc R, Granier A, Dreyer E. Temperate forest tree and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Des Sci for, 2006, 63: 625-644,
DOI
|
13 |
Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA, 2005, 102: 15144-15148,
DOI
|
14 |
Brien MJO, Leuzinger S, Philipson CD, Tay J, Hector A, O’Brien MJ. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat Clim Chang, 2014, 4: 710-714,
DOI
|
15 |
Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M, Čada V, Camarero JJ, Cherubini P, Cochard H, Coyea MR, Čufar K, Das AJ, Davi H, Delzon S, Dorman M, Gea-Izquierdo G, Gillner S, Haavik LJ, Hartmann H, Hereş AM, Hultine KR, Janda P, Kane JM, Kharuk VI, Kitzberger T, Klein T, Kramer K, Lens F, Levanic T, Linares Calderon JC, Lloret F, Lobo-Do-Vale R, Lombardi F, López Rodríguez R, Mäkinen H, Mayr S, Mészáros I, Metsaranta JM, Minunno F, Oberhuber W, Papadopoulos A, Peltoniemi M, Petritan AM, Rohner B, Sangüesa-Barreda G, Sarris D, Smith JM, Stan AB, Sterck F, Stojanović DB, Suarez ML, Svoboda M, Tognetti R, Torres-Ruiz JM, Trotsiuk V, Villalba R, Vodde F, Westwood AR, Wyckoff PH, Zafirov N, Martínez-Vilalta J. A synthesis of radial growth patterns preceding tree mortality. Glob Chang Biol, 2017, 23: 1675-1690,
DOI
|
16 |
Chow PS, Landhäusser SM. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol, 2004, 24: 1129-1136,
DOI
|
17 |
|
18 |
|
19 |
Deslauriers A. Impact of warming and drought on carbon balance related to wood formation in black spruce. Ann Bot, 2014, 114: 335-345,
DOI
|
20 |
Dickman LT, Mcdowell NG, Sevanto S, Pangle RE, Pockman WT. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant Cell Environ, 2015, 38: 729-739,
DOI
|
21 |
Dietrich L, Delzon S, Hoch G, Kahmen A. No role for xylem embolism or carbohydrate shortage in temperate trees during the severe 2015 drought. J Ecol, 2018, 107: 334-349,
DOI
|
22 |
Dong S, Beckles DM. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J Plant Physiol, 2019, 234–235: 80-93,
DOI
|
23 |
Furze M (2020) Whole-Tree Nonstructural Carbohydrate Budgets in Five Species at Harvard Forest 2014. Harvard For Data Arch HF308
|
24 |
Furze ME, Huggett BA, Aubrecht DM, Stolz CD, Carbone MS, Richardson AD. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol, 2018, 221: 1466-1477,
DOI
|
25 |
Gao Z, Sagi M, Lips SH. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci, 1998, 135: 149-159,
DOI
|
26 |
|
27 |
Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol, 2001, 125: 779-786,
DOI
|
28 |
Hartmann H, Bahn M, Carbone M, Richardson A. Plant carbon allocation in a changing world – challenges and progress : introduction to a Virtual Issue on carbon allocation. New Phytol, 2020, 227: 981-988,
DOI
|
29 |
Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees–from what we can measure to what we want to know. New Phytol, 2016, 211: 386-403,
DOI
|
30 |
Hartmann H, Ziegler W, Trumbore S. Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct Ecol, 2013, 27: 413-427,
DOI
|
31 |
Körner C. Paradigm shift in plant growth control. Curr Opin Plant Biol, 2015, 25: 107-114,
DOI
|
32 |
Landhäusser SM, Chow PS, Dickman LT, Furze ME, Kuhlman I, Schmid S, Wiesenbauer J, Wild B, Gleixner G, Hartmann H, Hoch G, Mcdowell NG, Richardson AD, Richter A, Adams HD. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiol, 2018, 38: 1764-1778,
DOI
|
33 |
|
34 |
Martínez-Vilalta J, Piñol J, Beven K. A hydraulic model to predict drought-induced mortality in woody plants: An application to climate change in the Mediterranean. Ecol Modell, 2002, 155: 127-147,
DOI
|
35 |
Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol Monogr, 2016, 86: 495-516,
DOI
|
36 |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol, 2008, 178: 719-739,
DOI
|
37 |
McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol, 2011, 155: 1051-1059,
DOI
|
38 |
McDowell NG, Allen CD, Marshall L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob Chang Biol, 2010, 16: 399-415,
DOI
|
39 |
McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, Cochard H, De Cáceres M, De Kauwe MG, Grossiord C, Hammond WM, Hartmann H, Hoch G, Kahmen A, Klein T, Mackay DS, Mantova M, Martínez-Vilalta J, Medlyn BE, Mencuccini M, Nardini A, Oliveira RS, Sala A, Tissue DT, Torres-Ruiz JM, Trowbridge AM, Trugman AT, Wiley E, Xu C. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat Rev Earth Environ, 2022, 3: 294-308,
DOI
|
40 |
O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat Clim Chang, 2014, 4: 710-714,
DOI
|
41 |
Prasch CM, Ott KV, Bauer H, Ache P, Hedrich R, Sonnewald U. β-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells. J Exp Bot, 2015, 66: 6059-6067,
DOI
|
42 |
Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD, Maillard P, Marchand J, Landhäusser SM, Lacointe A, Gibon Y, Anderegg WRL, Asao S, Atkin OK, Bonhomme M, Claye C, Chow PS, Clément-Vidal A, Davies NW, Dickman LT, Dumbur R, Ellsworth DS, Falk K, Galiano L, Grünzweig JM, Hartmann H, Hoch G, Hood S, Jones JE, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield SD, Martínez-Vilalta J, Maucourt M, McDowell NG, Moing A, Muller B, Nebauer SG, Niinemets Ü, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Joanis BS, Sala A, Smith RA, Sterck F, Stinziano JR, Tobias M, Unda F, Watanabe M, Way DA, Weerasinghe LK, Wild B, Wiley E, Woodruff DR. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol, 2015, 35: 1146-1165
|
43 |
Quirk J, McDowell NG, Leake JR, Hudson PJ, Beerling DJ. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am J Bot, 2013, 100: 582-591,
DOI
|
44 |
Richardson AD, Carbone MS, Huggett BA, Furze ME, Czimczik CI, Walker JC, Xu X, Schaberg PG, Murakami P. Distribution and mixing of old and new nonstructural carbon in two temperate trees. New Phytol, 2015, 206: 590-597,
DOI
|
45 |
Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu X. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol, 2013, 197: 850-861,
DOI
|
46 |
Sala A, Piper F, Hoch G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol, 2010, 186: 274-279,
DOI
|
47 |
Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine?. Tree Physiol, 2012, 32: 764-775,
DOI
|
48 |
Secchi F, Pagliarani C, Zwieniecki MA. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant Cell Environ, 2017, 40: 858-871,
DOI
|
49 |
Sevanto S, Mcdowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ, 2014, 37: 153-161,
DOI
|
50 |
Shaw J, Steed B, DeBlander L. Forest inventory and analysis (FIA) annual inventory answers the question: What is happening to pinyon-juniper woodlands?. J for, 2005, 103: 280-285
|
51 |
Sweet SK, Wolfe DW, DeGaetano A, Benner R. Anatomy of the 2016 drought in the Northeastern United States: Implications for agriculture and water resources in humid climates. Agric for Meteorol, 2017, 247: 571-581,
DOI
|
52 |
Thitisaksakul M, Arias MC, Dong SY, Beckles DM. Overexpression of GSK3-like Kinase 5 (OsGSK5) in rice (Oryza sativa) enhances salinity tolerance in part via preferential carbon allocation to root starch. Funct Plant Biol, 2017, 5: 705-719,
DOI
|
53 |
Thitisaksakul M, Dong SY, Beckles DM. How rice glycogen synthase kinase-like 5 (OsGSK5) integrates salinity stress response to source-sink adaptation: a proposed model. Plant Signal Behav, 2017, 12,
DOI
|
54 |
Thitisaksakul M, Jiménez RC, Arias MC, Beckles DM. Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci, 2012, 56: 67-80,
DOI
|
55 |
Thompson JR. Defoliated trees die below a critical threshold of stored carbon. Funct Ecol, 2021, 35: 2156-2167,
DOI
|
56 |
Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int J Mol Sci, 2020, 21(1): 144,
DOI
|
57 |
Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F. Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 2011, 62: 545-555,
DOI
|
58 |
van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin F, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Alan H, Veblen TT. Widespread Increase of tree mortality rates in the Western United States. Science, 2016, 323(5913): 521-524,
DOI
|
59 |
Vanderklein DW, Reich PB. The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits. New Phytol, 1999, 144: 121-132,
DOI
|
60 |
Wang T, Hamann A, Spittlehouse D, Carroll C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, 2016, 11: 1-17
|
61 |
Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, Mcdowell NG. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang, 2013, 3: 292-297,
DOI
|
62 |
Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW. Forest responses to increasing aridity and warmth in the southwestern United States. Proc Natl Acad Sci, 2010, 107: 21289-21294,
DOI
|
63 |
Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629,
DOI
|
64 |
Yin YG, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ’Micro-Tom’) fruits in an ABA-and osmotic stress-independent manner. J Exp Bot, 2010, 61: 563-574,
DOI
|
65 |
Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63: 215-227,
DOI
|