1 |
Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M. Rapid hormetic responses of photosystem II photochemistry of clary sage to cadmium exposure. Int J Mol Sci, 2021, 22: 1-21,
DOI
|
2 |
Agathokleous E. The rise and fall of photosynthesis: Hormetic dose response in plants. J for Res, 2021, 32: 789-803,
DOI
|
3 |
Agathokleous E, Saitanis C. Plant susceptibility to ozone: a tower of babel?. Sci Total Environ, 2020, 703,
DOI
|
4 |
Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Shi C, Koike T. High doses of ethylene diurea (EDU) are not toxic to willow and act as nitrogen fertilizer. Sci Total Environ, 2016, 566–567: 841-850,
DOI
|
5 |
Agathokleous E, Vanderstock A, Kita K, Koike T. Stem and crown growth of Japanese larch and its hybrid F1 grown in two soils and exposed to two free-air O3 regimes. Environ Sci Pollut Res, 2017, 24: 6634-6647,
DOI
|
6 |
Agathokleous E, Kitao M, Qingnan C, Saitanis CJ, Paoletti E, Manning WJ, Watanabe T, Koike T. Effects of ozone (O3) and ethylenediurea (EDU) on the ecological stoichiometry of a willow grown in a free-air exposure system. Environ Pollut, 2018, 238: 663-676,
DOI
|
7 |
Agathokleous E, Kitao M, Koike T. Ethylenediurea (EDU) effects on hybrid larch saplings exposed to ambient or elevated ozone over three growing seasons. J for Res, 2022, 33: 117-135,
DOI
|
8 |
Agathokleous E, Kitao M, Shi C, Masui N, Abu-ElEla S, Hikino K, Satoh F, Koike T. Ethylenediurea (EDU) spray effects on willows (Salix sachalinensis F. Schmid) grown in ambient or ozone-enriched air: implications for renewable biomass production. J for Res, 2022, 33: 397-422,
DOI
|
9 |
Backor M, Paulikova K, Geralska A, Davidson R. Monitoring of air pollution in Košice (eastern slovakia) using lichens. Polish J Environ Stud, 2003, 12: 141-150
|
10 |
Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot, 1992, 32: 85-100,
DOI
|
11 |
Cohen J. Statistical power analysis for the behavioral sciences, 1988 2 New York L. Erlbaum Associates
|
12 |
Döring AS, Pellegrini E, Campanella A, Trivellini A, Gennai C, Petersen M, Nali C, Lorenzini G. How sensitive is Melissa officinalis to realistic ozone concentrations?. Plant Physiol Biochem, 2014, 74: 156-164,
DOI
|
13 |
Dusart N, Gandin A, Vaultier M-N, Joffe R, Cabané M, Dizengremel P, Jolivet Y. Importance of detoxification processes in ozone risk assessment: need to integrate the cellular compartmentation of antioxidants?. Front for Glob Chang, 2019, 2: 45,
DOI
|
14 |
Fernandes FF, Esposito MP, da Silva Engela MRG, Cardoso-Gustavson P, Furlan CM, Hoshika Y, Carrari E, Magni G, Domingos M, Paoletti E. The passion fruit liana (Passiflora edulis Sims, Passifloraceae) is tolerant to ozone. Sci Total Environ, 2019, 656: 1091-1101,
DOI
|
15 |
González CM, Casanovas SS, Pignata ML. Biomonitoring of air pollutants from traffic and industries employing Ramalina ecklonii (Spreng.) Mey. and Flot. in Córdoba. Argentina Environ Pollut, 1996, 91: 269-277,
DOI
|
16 |
Gottardini E, Cristofori A, Cristofolini F, Nali C, Pellegrini E, Bussotti F, Ferretti M. Chlorophyll-related indicators are linked to visible ozone symptoms: Evidence from a field study on native Viburnum lantana L. plants in northern Italy. Ecol Indic, 2014, 39: 65-74,
DOI
|
17 |
Grulke NE, Heath RL. Ozone effects on plants in natural ecosystems. Plant Biol, 2020, 22: 12-37,
DOI
|
18 |
Gupta A, Yadav DS, Agrawal SB, Agrawal M. Individual effects of high temperature and tropospheric ozone on tomato: a review. J Plant Growth Regul, 2022,
DOI
|
19 |
Hendry GAF, Houghton JD, Brown SB. The degradation of chlorophyll -a biological enigma. New Phytol, 1987, 107: 255-302,
DOI
|
20 |
Ignatov NV, Litvin FF. Photoinduced formation of pheophytin/chlorophyll-containing complexes during the greening of plant leaves. Photosynth Res, 1994, 42: 27-35,
DOI
|
21 |
Kardish N, Ronen R, Bubrick P, Garty J. The influence of air pollution on the concentration of ATP and on chlorophyll degradation in the lichen, Ramalina duriaei (De Not.) Bagl. New Phytol, 1987, 106: 697-706,
DOI
|
22 |
Kitao M, Yasuda Y, Kominami Y, Yamanoi K, Komatsu M, Miyama T, Mizoguchi Y, Kitaoka S, Yazaki K, Tobita H, Yoshimura K, Koike T, Izuta T. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3. Sci Rep, 2016, 6: 32549,
DOI
|
23 |
Klimov VV. Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of photosystem II. Photosynth Res, 2003, 76: 247-253,
DOI
|
24 |
Knudson LLL, Tibbitts TWW, Edwards GEE. Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol, 1977, 60: 606-608,
DOI
|
25 |
Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot, 2018, 69: 751-767,
DOI
|
26 |
Lichtenthaler HK. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350-382,
DOI
|
27 |
Lu C, Zhao C, Liu J, Li K, Wang B, Chen M. Increased salinity and groundwater levels lead to degradation of the Robinia pseudoacacia forest in the yellow river delta. J for Res, 2022, 33: 1233-1245,
DOI
|
28 |
Manning WJ, Paoletti E, Sandermann H, Ernst D. Ethylenediurea (EDU): A research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ Pollut, 2011, 159: 3283-3293,
DOI
|
29 |
Manrique E, Redondo F, Seriñá E, Izco J. Estimation of chlorophyll degradation into phaeophytin in Anaptychia ciliaris as a method to detect air pollution. Lazaroa, 1989, 11: 141-148,
DOI
|
30 |
Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG, Neufeld HS, Simpson D, Sharps K, Feng Z, Gerosa G, Harmens H, Kobayashi K, Saxena P, Paoletti E, Sinha V, Xu X. Tropospheric ozone assessment report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa, 2018, 6: 47,
DOI
|
31 |
Moustakas M, Moustaka J, Sperdouli I. Hormesis in photosystem II: a mechanistic understanding. Curr Opin Toxicol, 2022, 29: 57-64,
DOI
|
32 |
Nobel PS. Ozone effects on chlorophylls a and b. Sci Nat, 1974, 61: 80-81,
DOI
|
33 |
Pellegrini E. PSII photochemistry is the primary target of oxidative stress imposed by ozone in Tilia americana. Urban for Urban Green, 2014, 13: 94-102,
DOI
|
34 |
Pellegrini E, Campanella A, Paolocci M, Trivellini A, Gennai C, Muganu M, Nali C, Lorenzini G. Functional leaf traits and diurnal dynamics of photosynthetic parameters predict the behavior of grapevine varieties towards ozone. PLoS ONE, 2015, 10,
DOI
|
35 |
Penuelas J, Filella I, Lloret P, Munoz F, Vilajeliu M. Reflectance assessment of mite effects on apple trees. Int J Remote Sens, 1995, 16: 2727-2733,
DOI
|
36 |
Proietti C, Fornasier MF, Sicard P, Anav A, Paoletti E, De Marco A. Trends in tropospheric ozone concentrations and forest impact metrics in Europe over the time period 2000–2014. J for Res, 2020, 32: 543-551,
DOI
|
37 |
Ronen R, Galun M. Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environ Exp Bot, 1984, 24: 239-245,
DOI
|
38 |
Sabaratnam S, Gupta G, Mulchi C. Effects of nitrogen dioxide on leaf chlorophyll and nitrogen content of soybean. Environ Pollut, 1988, 51: 113-120,
DOI
|
39 |
Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell, 2009, 21: 767-785,
DOI
|
40 |
Senser M. Influence of soil substrate and ozone plus acid mist on the frost resistance of young Norway spruce. Environ Pollut, 1990, 64: 265-278,
DOI
|
41 |
Shinano T, Lei TT, Kawamukai T, Inoue MT, Koike T, Tadano T. Dimethylsulfoxide method for the extraction of chlorophylls a and b from the leaves of wheat, field bean, dwarf bamboo, and oak. Photosynthetica, 1996, 32: 409-415
|
42 |
Sicard P, Hoshika Y, Carrari E, De Marco A. Paoletti E (2021) Testing visible ozone injury within a Light Exposed Sampling Site as a proxy for ozone risk assessment for European forests. J for Res, 2021, 32: 1351-1359,
DOI
|
43 |
Siefermann-Harms D, Payer HD, Schramel P, Lütz C. The effect of ozone on the yellowing process of magnesium-deficient clonal Norway spruce grown under defined conditions. J Plant Physiol, 2005, 162: 195-206,
DOI
|
44 |
Singh AA, Singh S, Agrawal M, Agrawal SB. Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. Rev Environ Cont Tox, 2015, 233: 129-184,
DOI
|
45 |
Tallmadge G (1977) Ideabook: The joint dissemination review panel. U.S. dept. of health, education and welfare, National Institute of Education, U.S. Office of Education, Washington
|
46 |
Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA, 1998, 95: 12719-12723,
DOI
|
47 |
Tiwari S, Agrawal M. Protection of palak (Beta vulgaris L. var Allgreen) plants from ozone injury by ethylenediurea (EDU): roles of biochemical and physiological variations in alleviating the adverse impacts. Chemosphere, 2009, 75: 1492-1499,
DOI
|
48 |
Tiwari S, Agrawal M. Tropospheric ozone and its impacts on crop plants, 2018 1 Cham Springer International Publishing,
DOI
|
49 |
Verkroost M (1974) The effect of ozone on photosynthesis and respiration of Scenedesmus obtusiusculus Chod., with a general discussion of effects of air pollutants in plants. Meded. Landbouwhogesch. Wageningen 7. Mededelingen Landbouwhogeschool Wageningen
|
50 |
Wolf FM. Meta-analysis: quantitative methods for research synthesis, 1986 1 Beverly Hills Sage Publications 72,
DOI
|