1 |
Aggangan RT, O’Connell AM, McGrath JF, Dell B. The effects of Eucalyptus globulus Labill. leaf letter on C and N mineralization in soils from pasture and native forest. Soil Biol Biochem, 1999, 31(11): 1481-1487,
DOI
|
2 |
Aka H, Darici C. Carbon and nitrogen mineralization in carob soils with Kermes oak and Aleppo pine leaf litter. Eur J Soil Biol, 2005, 41(1): 31-38,
DOI
|
3 |
Almagro M, Ruiz-Navarro A, Díaz-Pereira E, Albaladejo J, Martínez-Mena M. Plant residue chemical quality modulates the soil microbial response related to decomposition and soil organic carbon and nitrogen stabilization in a rainfed Mediterranean agroecosystem. Soil Biol Biochem, 2021, 156: 108198,
DOI
|
4 |
Berglund SL, Agren GI, Ekblad A. Carbon and nitrogen transfer in leaf litter mixtures. Soil Biol Biochem, 2013, 57: 341-348,
DOI
|
5 |
Bhatnagar JM, Peay KG, Treseder KK. Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol Monogr, 2018, 88(3): 429-444,
DOI
|
6 |
Bindraban PS, Stoorvogel JJ, Jansen DM, Vlaming J, Groot JJR. Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agr Ecosyst Environ, 2000, 81(2): 103-112,
DOI
|
7 |
Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil-nitrogen-a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem, 1985, 17(6): 837-842,
DOI
|
8 |
Cabrera M, Kissel D, Vigil M. Nitrogen mineralization from organic residues: research opportunities. J Environ Qual, 2005, 34: 75-79,
DOI
|
9 |
Chen Y, Ma S, Sun J, Wang X, Cheng G, Lu X. Chemical diversity and incubation time affect non-additive responses of soil carbon and nitrogen cycling to litter mixtures from an alpine steppe soil. Soil Biol Biochem, 2017, 109: 124-134,
DOI
|
10 |
Chen Y, Ma S, Liu J, Cheng G, Lu X. Soil C and N dynamics and their non-additive responses to litter mixture under different moisture conditions from an alpine steppe soil, Northern Tibet. Soil Biol Biochem, 2018, 125: 231-238,
DOI
|
11 |
Cornwell WK, Schwilk DW, Ackerly DD. A trait-based test for habitat filtering: convex hull volume. Ecology, 2006, 87(6): 1465-1471,
DOI
|
12 |
Cotrufo MF, Galdo I, Piermatteo D. Litter decomposition: concepts, methods and future perspectives. Soil Carbon Dyn: Integr Methodol, 2010,
DOI
|
13 |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Global Change Biol, 2013, 19(4): 988-995,
DOI
|
14 |
Fukami T, Wardle DA. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc R Soc b: Biol Sci, 2005, 272(1577): 2105-2115,
DOI
|
15 |
Ganjegunte GK, Condron LM, Clinton PW, Davis MR. Effects of mixing radiata pine needles and understory litters on decomposition and nutrients release. Biol Fert Soils, 2005, 41(5): 310-319,
DOI
|
16 |
Gao T, Zhu JJ, Yan QL, Deng SQ, Zheng X, Zhang JX, Shang GD. Mapping growing stock volume and biomass carbon storage of larch plantations in Northeast China with L-band ALOS PALSAR backscatter mosaics. Int J Remote Sens, 2018, 39(22): 7978-7997,
DOI
|
17 |
Gao PZ, Zhu JJ, Yang K, Yan QL, Zhang JX, Yu LZ, Diao MM, Xu S. Can larch-Aralia elata agroforestry systems improve the soil chemical and microbial properties of larch plantations?. Agrofor Syst, 2022,
DOI
|
18 |
Garcia C, Roldan A, Hernandez T. Ability of different plant species to promote microbiological processes in semiarid soil. Geoderma, 2005, 124(1): 193-202,
DOI
|
19 |
Gartner TB, Cardon ZG. Decomposition dynamics in mixed-species leaf litter. Oikos, 2004, 104(2): 230-246,
DOI
|
20 |
German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem, 2011, 43(7): 1387-1397,
DOI
|
21 |
Hättenschwiler S, Tiunov A, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst, 2005, 36: 191-218,
DOI
|
22 |
Haynes RJ. The decomposition process: mineralization, immobilization, humus formation, and degradation, chapter 2, 1986 Academic Press, Inc 52-126
|
23 |
Hector A, Beale AJ, Minns A, Otway S, Lawton J. Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 2000,
DOI
|
24 |
Hu YL, Wang SL, Zeng DH. Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities. Plant Soil, 2006, 282(1): 379-386,
DOI
|
25 |
Ilstedt U, Singh S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol Biochem, 2005,
DOI
|
26 |
Jiang J, Li Y, Wang M, Zhou C, Cao G, Shi P, Song M. Litter species traits, but not richness, contribute to carbon and nitrogen dynamics in an alpine meadow on the Tibetan Plateau. Plant Soil, 2013, 373(1): 931-941,
DOI
|
27 |
John MK. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci, 1970, 109(4): 214-0,
DOI
|
28 |
Joly F-X, Fromin N, Kiikkilä O, Hättenschwiler S. Diversity of leaf litter leachates from temperate forest trees and its consequences for soil microbial activity. Biogeochemistry, 2016, 129(3): 373-388,
DOI
|
29 |
Keiluweit M, Nico P, Harmon Mark E, Mao J, Pett-Ridge J, Kleber M. Long-term litter decomposition controlled by manganese redox cycling. Proc Natl Acad Sci, 2015, 112(38): E5253-E5260,
DOI
|
30 |
Kourtev PS, Ehrenfeld JG, Huang WZ. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol Biochem, 2002, 34(9): 1207-1218,
DOI
|
31 |
Kuebbing SE, Bradford MA. The potential for mass ratio and trait divergence effects to explain idiosyncratic impacts of non-native invasive plants on carbon mineralization of decomposing leaf litter. Funct Ecol, 2019, 33(6): 1156-1171,
DOI
|
32 |
Kuiters AT. Role of phenolic substances from decomposing forest litter in plant–soil interactions. Acta Botanica Neerlandica, 1990, 39(4): 329-348,
DOI
|
33 |
Li CY, Zhou XF. Status and future trends in plantation silviculture in China. Ambio, 2000, 29(6): 354-355,
DOI
|
34 |
Li D, Peng S, Chen B. The effects of leaf litter evenness on decomposition depend on which plant functional group is dominant. Plant Soil, 2013, 365(1): 255-266,
DOI
|
35 |
Liu SR, Li XM, Niu LM. The degradation of soil fertility in pure larch plantations in the northeastern part of China. Ecol Eng, 1998, 10(1): 75-86,
DOI
|
36 |
Makkonen M, Berg MP, van Logtestijn RSP, van Hal JR, Aerts R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos, 2013, 122(7): 987-997,
DOI
|
37 |
Mason WL, Zhu JJ. ilviculture of planted forests managed for multi-functional objectives: lessons from Chinese and British experiences, 2014 Springer, Dordrecht, Netherlands n: Trevor Fenning (ed) Challenges and opportunities for the world's forests in the 21st century 37-54
|
38 |
Mitchell J, Lockaby G, Brantley E. Influence of Chinese privet (Ligustrum sinense) on decomposition and nutrient availability in riparian forests. Invasive Plant Sci Manag, 2011, 4: 437-447,
DOI
|
39 |
Mukhopadhyay S, Joy VC. Influence of leaf litter types on microbial functions and nutrient status of soil: ecological suitability of forest trees for afforestation in tropical laterite wastelands. Soil Biol Biochem, 2010, 42(12): 2306-2315,
DOI
|
40 |
Naeem I, Asif T, Wu X, Hassan N, Yiming L, Wang H, Wang L, Wang D. Species diversity induces idiosyncratic effects on litter decomposition in a degraded meadow steppe. Front Environ Sci, 2021, 9: 582409,
DOI
|
41 |
Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (Eds). Methods of soil analysis. Part 2. Chemical and microbiological methods. Am Soc of Agron, Madison, pp 403–410
|
42 |
Pérez-Harguindeguy N, Blundo C, Gurvich D, Diaz S, Cuevas E. More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil, 2008, 303: 151-159,
DOI
|
43 |
Prescott CE. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochem, 2010, 101(1–3): 133-149,
DOI
|
44 |
Preston CM, Nault JR, Trofymow JA, Smyth C, Group CW. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosyst, 2009, 12(7): 1053-1077,
DOI
|
45 |
Sall SN, Masse D, Bernhard-Reversat F, Guisse A, Chotte J-L. Microbial activities during the early stage of laboratory decomposition of tropical leaf litters: the effect of interactions between litter quality and exogenous inorganic nitrogen. Biol Fert Soils, 2003, 39(2): 103-111,
DOI
|
46 |
Sun T, Cui Y, Berg B, Zhang Q, Dong L, Wu Z, Zhang L. A test of manganese effects on decomposition in forest and cropland sites. Soil Biol Biochem, 2019, 129: 178-183,
DOI
|
47 |
Teklay T, Nordgren A, Nyberg G, Malmer A. Carbon mineralization of leaves from four Ethiopian agroforestry species under laboratory and field conditions. Appl Soil Ecol, 2007, 35(1): 193-202,
DOI
|
48 |
Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 1987, 19(6): 703-707,
DOI
|
49 |
Voříšková J, Dobiášová P, Šnajdr J, Vaněk D, Cajthaml T, Šantrůčková H, Baldrian P. Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare. Fungal Ecol, 2011, 4(6): 417-426,
DOI
|
50 |
Wang C, Peng QD, Yang XC, Wang SM. Researches on lignocellulose components of different black locust clones for producing bioethanol. J Cent South Univ For Technol, 2015, 35(124–127): 138, in Chinese
DOI
|
51 |
Wang Y, Wang H, He J-S, Feng X. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat Commun, 2017, 8(1): 15972,
DOI
|
52 |
Weand MP, Arthur MA, Lovett GM, McCulley RL, Weathers KC. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol Biochem, 2010, 42(12): 2161-2173,
DOI
|
53 |
Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species?. Ecol Lett, 2009, 12(1): 45-56,
DOI
|
54 |
Whitmore AP. Modelling the release and loss of nitrogen after vegetable crops. Njas-Wageningen J Life Sci, 1996, 44: 73-86,
DOI
|
55 |
Wieder WR, Cleveland CC, Townsend AR. Controls over leaf litter decomposition in wet tropical forests. Ecology, 2009, 90(12): 3333-3341,
DOI
|
56 |
Wu F, Peng C, Yang W, Zhang J, Han Y, Mao T. Admixture of alder (Alnus formosana) litter can improve the decomposition of eucalyptus (Eucalyptus grandis) litter. Soil Biol Biochem, 2014, 73: 115-121,
DOI
|
57 |
Xiao W, Chen HYH, Kumar P, Chen C, Guan Q. Multiple interactions between tree composition and diversity and microbial diversity underly litter decomposition. Geoderma, 2019, 341: 161-171,
DOI
|
58 |
Yang K, Zhu JJ. Impact of tree litter decomposition on soil biochemical properties obtained from a temperate secondary forest in Northeast China. J Soils Sediments, 2015, 15(1): 13-23,
DOI
|
59 |
Yang K, Zhu JJ, Zhang M, Yan QL, Sun OJ. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J Plant Ecol-Uk, 2010, 3(3): 175-182,
DOI
|
60 |
Yang K, Zhu JJ, Yan QL, Zhang JX. Soil enzyme activities as potential indicators of soluble organic nitrogen pools in forest ecosystems of Northeast China. Ann Forest Sci, 2012, 69(7): 795-803,
DOI
|
61 |
Yang K, Shi W, Zhu JJ. The impact of secondary forests conversion into larch plantations on soil chemical and microbiological properties. Plant Soil, 2013, 368(1–2): 535-546,
DOI
|
62 |
Zeng Q, Chen Z, Tan W. Plant litter quality regulates soil eco-enzymatic stoichiometry and microbial nutrient limitation in a citrus orchard. Plant Soil, 2021, 466(1): 179-191,
DOI
|
63 |
Zhang M, Cheng X, Geng Q, Shi Z, Luo Y, Xu X. Leaf litter traits predominantly control litter decomposition in streams worldwide. Glob Ecol Biogeogr, 2019, 28(10): 1469-1486,
DOI
|
64 |
Zhou L, Cai L, He Z, Wang R, Wu P, Ma X. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Environ Sci Pollut Res Int, 2016, 23(23): 24135-24150,
DOI
|
65 |
Zhou S, Butenschoen O, Barantal S, Handa IT, Makkonen M, Vos V, Aerts R, Berg MP, McKie B, Van Ruijven J, Hättenschwiler S, Scheu S, Pérez-Harguindeguy N. Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. J Ecol, 2020, 108(6): 2283-2297,
DOI
|