1 |
Alexander P, Paul FG, Matteo P, Victoria LS. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol Ecol, 2015, 24: 3823-3830,
DOI
|
2 |
Arcade A, Faivre-Rampant P, Guerroué B, Paques LE, Prat D. Heterozygosity and hybrid performance in larch. Theor Appl Genet, 1996, 93(8): 1274-1281,
DOI
|
3 |
Aschero V, Srur AM, Guerrido C, Villalba R. Contrasting climate influences on Nothofagus pumilio establishment along elevational gradients. Plant Ecol, 2022, 223(4): 369-380,
DOI
|
4 |
Boris Z. Analysis of growth equations. For Sci, 1993, 3: 594-616
|
5 |
Burdon RD. Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silvae Genet, 1977, 26: 168-175
|
6 |
Butler D, Cullis B, Gilmour A, Gogel B (2009) ASReml-R reference manual (Version 3). Queensland Department of Primary Industries and Fisheries, Brisbane, Australia
|
7 |
Cai SG, Shen QF, Huang YQ, Han ZG, Wu DZ, Chen ZH, Nevo E, Zhang GP. Multi-omics analysis reveals the mechanism underlying the edaphic adaptation in wild barley at evolution slope (Tabigha). Adv Sci, 2021, 8: 3-13,
DOI
|
8 |
Catherine C, Clement C. Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry, 2006, 5: 489-502
|
9 |
Ci D, Song YP, Du QZ, Tian M, Han S, Zhang DQ. Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits. J Exp Bot, 2016, 67: 723-737,
DOI
|
10 |
Diao S, Hou YM, Xie YH, Sun XM. Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genet, 2016, 17(1): 104,
DOI
|
11 |
Duncan EJ, Gluckman PD, Dearden PK. Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype?. J Exp Zool Part B, 2014, 322: 208-220,
DOI
|
12 |
Filipiak M, Napierala-Filipiak A. Relation between the height of Larix kaempferi and some climatic characteristics in Poland. Dendrobiology, 2008, 60: 11-17
|
13 |
Frenne PD, Graae BJ, Rodríguez-Sanchez F, Kolb A, Verheyen K. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol, 2013, 101(3): 784-795,
DOI
|
14 |
Gilmour A, Gogel B, Cullis B, Thompson R (2009) ASReml User Guide Release 3.0 VSN Hemel Hempstead: International Ltd. Hemel Hempstead, UK, p 23
|
15 |
Ginestet C. ggplot2: elegant graphics for data analysis. J R Stat Soc, 2011, 174: 245-246,
DOI
|
16 |
Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol, 2016, 25(8): 1665-1680,
DOI
|
17 |
Hardawati Y, Bhumibhamon S, Sookchaloem D. Diversity status and sustainable uses of some Minor Forest Products in Ban Thung Soong Community Forest in Krabi province. Thailand J Sust Dev, 2009, 1(1): 69-74
|
18 |
Hayashi Y. Taxonomical and phytogeographical study of Japanese conifers. Cf. f.a., 1960, 16: 2732
|
19 |
Hodge GR, Dvorak WS. Provenance variation and within-provenance genetic parameters in Eucalyptus urophylla across 125 test sites in Brazil, Colombia, Mexico, South Africa and Venezuela. Tree Genet Genomes, 2015, 12(2): 344-357
|
20 |
|
21 |
Ingvarsson PK, Street NR. Association genetics of complex traits in plants. New Phytol, 2011, 189(4): 909-922,
DOI
|
22 |
Johnson Z, Zinser E, Coe A, Mcnulty N, Woodward E, Chisholm S. Niche partitioning among prochlorococcus ecotypes along ocean-scale environmental gradients. Science, 2006, 311(5768): 1737-1740,
DOI
|
23 |
Jose-Maldia LS, Uchida K, Tomaru N. Mitochondrial DNA variation in natural populations of Japanese larch (Larix kaempferi). Silvae Genet, 2009, 24(6): 555-558
|
24 |
Langlet O. Two hundred years genecology. Taxon, 1971, 20(5–6): 653-721,
DOI
|
25 |
Leonelli G, Pelfini M, Battipaglia G, Cherubini P. Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Clim Change, 2009, 96(1): 185-201,
DOI
|
26 |
López-Goldar X, Agrawal AA. Ecological interactions, environmental gradients, and gene flow in local adaptation. Trends Plant Sci, 2021, 26(8): 796-809,
DOI
|
27 |
Lortie CJ, Hierro JL. A synthesis of local adaptation to climate through reciprocal common gardens. J Ecol, 2021, 00: 1-7
|
28 |
Maaten-Theunissen M, Bouriaud O. Climate-growth relationships at different stem heights in silver fir and Norway spruce. Can J Forest Res, 2012, 42(5): 958-969,
DOI
|
29 |
Magnussen S, Park YS. Growth-curve differentiation among Japanese larch provenances. Can J Forest Res, 1991, 21(4): 504-513,
DOI
|
30 |
McKown A, Guy RD, Klápště J, Geraldes A, Friedmann M, Cronk Q, El-Kassaby Y, Mansfield S, Douglas C. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol, 2014, 201(4): 1263-1276,
DOI
|
31 |
Mu Q, Guo TT, Li XR, Yu JM. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range. New Phytol, 2021, 117: 733-748
|
32 |
Nagaike T. Effects of altitudinal gradient on species composition of naturally regenerated trees in Larix kaempferi plantations in central Japan. J Forest Res-Jpn, 2010, 15(1): 65-70,
DOI
|
33 |
Nagamitsu T, Nagasaka K, Yoshimaru H, Tsumura Y. Provenance tests for survival and growth of 50-year-old Japanese larch (Larix kaempferi) trees related to climatic conditions in central Japan. Tree Genet Genomes, 2013, 10(1): 87-99,
DOI
|
34 |
Ngulube MR. Seed germination, seedling growth and biomass production of eight Central-American multipurpose trees under nursery conditions in Zomba. Malawi for Ecol Manag, 1989, 27(1): 21-27
|
35 |
Pan Y, Jiang L, Xu G, Li J, Wang B, Li YX, Zhao X. Evaluation and selection analyses of 60 Larix kaempferi clones in four provenances based on growth traits and wood properties. Tree Genet Genomes, 2020, 16: 1-1,
DOI
|
36 |
Paques LE. Genetic diversity in larch. I. Results of 34 years of provenance testing with European larch. Ann Forest Sci, 1996, 53: 51-67
|
37 |
Park YS, Fowler DP. A provenance test of Japanese larch in eastern Canada, including comparative data on European larch and tamarack. Silvae Genet, 1983, 32(6): 327-330
|
38 |
Rammig A, Bebi P, Bugmann H, Fahse. Adapting a growth equation to model tree regeneration in mountain forests. Eur J For Res, 2007, 126(1): 49-57,
DOI
|
39 |
Rehfeldt GE, Tchebakova NM, Milyutin LI, Parfenova EI, Kouzmina NA. Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models. Eur J For Res, 2003, 6: 83-98
|
40 |
Self SG, Liang KY. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc, 1987, 82(398): 605-610,
DOI
|
41 |
Shater Z, De-Miguel S, Kraid B, Pukkala T, Palahí M. A growth and yield model for even-aged Pinus brutia Ten. stands in Syria. Ann for Sci, 2011, 68(1): 149-157,
DOI
|
42 |
Soetaert K, Petzoldt T, Setzer RW. Solving differential equations in R: Package deSolve. Am Inst Phys, 2010, 33: 1-25
|
43 |
Stettler RF, Bradshaw HD. The choice of genetic material for mechanistic studies of adaptation in forest trees. Tree Physiol, 1994, 14(7–9): 781-796,
DOI
|
44 |
Vanhove M, Pina-Martins AF, Coelho AC, Branquinho C, Paulo OS. Using gradient Forest to predict climate response and adaptation in Cork oak. J Evolution Biol, 2021, 34(6): 910-923,
DOI
|
45 |
Wang TL, Wang GY, Innes JL, Seely B, Chen BZ. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific. Front Agr Sci Eng, 2017, 4(4): 448-458,
DOI
|
46 |
Wu CY, Chen DS, Shen JP, Sun XM, Zhang SG. Estimating the distribution and productivity characters of Larix kaempferi in response to climate change. J Environ Manag, 2021, 280(2): ,
DOI
|
47 |
Zhang H, Zhang SK, Chen SP, Xi D, Yang CP, Zhang XY. Genetic variation and superior provenances selection for wood properties of Larix olgensis at four trials. J For Res, 2022,
DOI
|