1 |
Al Janabi S, Al Shourbaji I, Salman MA. Assessing the suitability of soft computing approaches for forest fire prediction. Appl Comput Inform, 2018, 14: 214-224,
DOI
|
2 |
Alonso-Betanzos A, Fontenla-Romero O, Guijarro-Berdiñas B, Hernández-Pereira E, Paz-Andrade MI, Jimenez E, Legido JL, Carballas T. An intelligent system for forest fire risk prediction and firefighting management in Galicia. Expert Syst Appl, 2003, 25: 545-554,
DOI
|
3 |
Arrue BC, Ollero A, Ramiro J. An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intell Syst Appl, 2000, 15: 64-73,
DOI
|
4 |
Bolton T, Zanna L. Applications of deep learning to ocean data inference and subgrid parameterization. J Adv Model Earth Syst, 2019, 11: 376-399,
DOI
|
5 |
Camp A, Oliver C, Hessburg P, Everett R. Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee mountains. For Ecol Manag, 1997, 95: 63-77,
DOI
|
6 |
Coffield SR, Graff CA, Chen Y. Machine learning to predict final fire size at the time of ignition. Int J Wildland Fire, 2019, 28: 861-873,
DOI
|
7 |
Cortez P, Morais A. A data mining approach to predict forest fires using meteorological data. In: Portuguese Conference on Artificial Intelligence, 2007 Portugal Guimarães 512-523
|
8 |
Dimitrakopoulos AP, Vlahou M, Anagnostopoulou CG. Impact of drought on wildland fires in Greece: implications of climate change?. Clim Chang, 2011, 109: 331-347,
DOI
|
9 |
Guo Y, Liu Y, Oerlemans A. Deep learning for visual understanding: a review. Neurocomputing, 2016, 187: 27-48,
DOI
|
10 |
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313: 504-507,
DOI
|
11 |
Hodges JL, Lattimer BY. Wildland fire spread modeling using convolutional neural networks. Fire Technol, 2019, 55: 2115-2142,
DOI
|
12 |
Jafari Goldarag Y, Mohammadzadeh A, Ardakani AS. Fire risk assessment using neural network and logistic regression. J Indian Soc Remote Sens, 2016, 44: 885-894,
DOI
|
13 |
Júnior JSS, Paulo JR, Mendes J. Automatic forest fire danger rating calibration: exploring clustering techniques for regionally customizable fire danger classification. Expert Syst Appl, 2022, 193: 116380,
DOI
|
14 |
Kala CP. Environmental and socioeconomic impacts of forest fires: a call for multilateral cooperation and management interventions. Nat Hazards Res, 2023, 3: 286-294,
DOI
|
15 |
Koutsias N, Xanthopoulos G, Founda D. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire, 2013, 22: 493-507,
DOI
|
16 |
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60: 84-90,
DOI
|
17 |
Li Z, Huang Y, Li X, Xu L. Wildland fire burned areas prediction using long short-term memory neural network with attention mechanism. Fire Technol, 2021, 57: 1-23,
DOI
|
18 |
Liu J, Gong X. Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction. BMC Bioinform, 2019, 20: 1-11,
DOI
|
19 |
Nebot À, Mugica F, Pellizzaro G. Forest fire forecasting using fuzzy logic models. Forests, 2021, 12: 1005,
DOI
|
20 |
North MP, Stephens SL, Collins BM, Agee JK, Aplet G, Franklin JF, Fulé PZ. Reform forest fire management. Science, 2015, 349(6254): 1280-1281,
DOI
|
21 |
Oliveira S, Oehler F, San-Miguel-Ayanz J. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For Ecol Manag, 2012, 275: 117-129,
DOI
|
22 |
Pausas JG, Fernandez-Munoz S. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to draught-driven fire regime. Clim Chang, 2012, 110: 215-226,
DOI
|
23 |
Peng Y, Wang Y. Real-time forest smoke detection using hand-designed features and deep learning. Comput Electron Agric, 2019, 167: 105029,
DOI
|
24 |
Pourghasemi H, reza, Beheshtirad M, Pradhan B, . A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat Nat Haz Risk, 2016, 7: 861-885,
DOI
|
25 |
Sakr GE, Elhajj IH, Mitri G, Wejinya UC 2010 Artificial intelligence for forest fire prediction. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM 1311–1316
|
26 |
Silva SJ, Heald CL, Ravela S, Mammarella I, Munger JW. A deep learning parameterization for ozone dry deposition velocities. Geophys Res Lett, 2019, 46: 983-989,
DOI
|
27 |
Subramanian SG, Crowley M. Using spatial reinforcement learning to build forest wildfire dynamics models from satellite images. Front ICT, 2018, 5: 6,
DOI
|
28 |
Taylor SW, Alexander ME. Science, technology, and human factors in fire danger rating: THE Canadian experience. Int J Wildland Fire, 2006, 15: 121-135,
DOI
|
29 |
Tien Bui D, Pradhan B, Nampak H, Quang-Thanh B, Quynh-An T, Quoc-Phi N. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. J Hydrol (amst), 2016, 540: 317-330,
DOI
|
30 |
Tien Bui D, Van LH, Hoang ND. GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecol Inform, 2018, 48: 104-116,
DOI
|
31 |
Turco M, Bedia J, Di Liberto F, Fiorucci P, von Hardenberg J, Koutsias N, Llasat MC, Xystrakis F, Provenzale A. Decreasing fires in Mediterranean Europe. PLoS ONE, 2016, 11(3): e0150663,
DOI
|
32 |
Vaswani A, Shazeer N. Attention is all you need. Adv Neural Inf Process Syst, 2017, 30: 6000-6010
|
33 |
Wang L, Zhao Q, Wen Z, Qu J. RAFFIA: Short-term forest fire danger rating prediction via multiclass logistic regression. Sustainability, 2018, 10(12): 4620,
DOI
|
34 |
Wang Y, Dang L, Ren J. Forest fire image recognition based on convolutional neural network. J Algorithm Comput Technol, 2019, 13: 1748302619887689,
DOI
|
35 |
Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: Convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer Vision–ECCV 2018. Lecture notes in computer science, 11211. Springer, Cham, https://doi.org/10.1007/978-3-030-01234-2_1
|
36 |
Wu Z, He HS, Yang J. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Sci Total Environ, 2014, 493: 472-480,
DOI
|
37 |
Yang X, Wang Y, Liu X, Liu Y. High-precision real-time forest fire video detection using one-class model. Forests, 2022, 13: 18-26,
DOI
|
38 |
Ying L, Han J, Du Y, Shen Z. Forest fire characteristics in China: Spatial patterns and determinants with thresholds. For Ecol Manag, 2018, 424: 345-354,
DOI
|
39 |
You Y, Lu C, Wang W, Tang CK. Relative CNN-RNN: Learning relative atmospheric visibility from images. IEEE Trans Image Process, 2019, 28: 45-55,
DOI
|
40 |
Zhang G, Wang M, Liu K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. Int J Disaster Risk Sci, 2019, 10: 386-403,
DOI
|
41 |
Zhang H, Goodfellow I, Metaxas D (2019b) Self-attention generative adversarial networks. In: International conference on machine learning, Beach, CA, USA. pp 7354–7363 2019b
|
42 |
Zhang H, Goodfellow I, Metaxas D, Odena A (2019c) Self-attention generative adversarial networks. In: Proceedings of the 36th international conference on machine learning, Long Beach, California, PMLR 97
|