1 |
Abdalla A, Elmahal A (2016) Augmentation of vertical accuracy of digital elevation models using Gaussian linear convolution filter. In: 2016 Conference of Basic Sciences and Engineering Studies SGCAC. Khartoum, Sudan, pp 206–210
|
2 |
Aboutalebi M, Torres-Rua AF, Kustas WP, Nieto H, Coopmans C, McKee M. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration. Irrig Sci, 2019, 37: 407-429,
DOI
|
3 |
Acosta-Hernández AC, Padilla-Martínez JR, Hernández-Díaz JC, Prieto-Ruiz JA, Goche-Telles JR, Nájera-Luna JA, Pompa-García M. Influence of climate on carbon sequestration in conifers growing under contrasting hydro-climatic conditions. Forests, 2020, 11: 11,
DOI
|
4 |
Aragones D, Rodriguez-Galiano VF, Caparros-Santiago JA, Navarro-Cerrillo RM. Could land surface phenology be used to discriminate mediterranean pine species?. Int J Appl Earth Obs Geoinf, 2019, 78: 281-294,
DOI
|
5 |
Avtar R, Suab SA, Syukur MS, Korom A, Umarhadi DA, Yunus AP. Assessing the influence of UAV altitude on extracted biophysical parameters of young oil palm. Remote Sens, 2020, 12: 18,
DOI
|
6 |
Barbasiewicz A, Widerski T, Daliga K. The analysis of the accuracy of spatial models using photogrammetric software: agisoft photoscan and Pix4D. E3S Web Conf, 2018, 26: 12,
DOI
|
7 |
Beucher S, Meyer F. Dougherty ER. The morphological approach to segmentation: the watershed transformation. Mathematical Morphology in Image Processing, 2018 CRC Press 433-481,
DOI
|
8 |
Bickford IN, Fulé PZ, Kolb TE. Growth sensitivity to drought of co-occurring Pinus spp. along an elevation gradient in northern Mexico. West North Am Nat, 2011, 71: 338-348,
DOI
|
9 |
Boon MA, Drijfhout AP, Tesfamichael S. Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: a case study. Int Arch Photogramm Remote Sens Spat Inf Sci, 2017, 42: 47-54,
DOI
|
10 |
Bose AK, Scherrer D, Camarero JJ, Ziche D, Babst F, Bigler C, Bolte A, Dorado-Liñán I, Etzold S, Fonti P, Forrester DI, Gavinet J, Gazol A, de Andrés EG, Karger DN, Lebourgeois F, Lévesque M, Martínez-Sancho E, Menzel A, Neuwirth B, Nicolas M, Sanders TGM, Scharnweber T, Schröder J, Zweifel R, Gessler A, Rigling A. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Sci Total Environ, 2021, 784: 147222,
DOI
|
11 |
Brede B, Calders K, Lau A, Raumonen P, Bartholomeus HM, Herold M, Kooistra L. Non-destructive tree volume estimation through quantitative structure modelling: comparing UAV laser scanning with terrestrial LIDAR. Remote Sens Environ, 2019, 233: 111355,
DOI
|
12 |
Brovkina O, Cienciala E, Surový P, Janata P. Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. Geo-Spatial Inf Sci, 2018, 21: 12-20,
DOI
|
13 |
Burdziakowski P. Evaluation of open drone map toolkit for geodetic grade aerial drone mapping. Int Multidiscip Sci GeoConference-SGEM, 2017, 17: 101-109,
DOI
|
14 |
|
15 |
Clerici N, Weissteiner CJ, Gerard F. Exploring the use of MODIS NDVI-based phenology indicators for classifying forest general habitat categories. Remote Sens, 2012, 4: 1781-1803,
DOI
|
16 |
Crutzen PJ, Brauch HG. A pioneer on atmospheric chemistry and climate change in the anthropocene, 2016 Cham Springer
|
17 |
D’Odorico P, Besik A, Wong CYS, Isabel N, Ensminger I. High-throughput drone-based remote sensing reliably tracks phenology in thousands of conifer seedlings. New Phytol, 2020, 226: 1667-1681,
DOI
|
18 |
de Castro AI, Shi Y, Maja JM, Peña JM. UAV for vegetation monitoring: overview and recent scientific contributions. Remote Sens, 2021, 13(11): 2139,
DOI
|
19 |
Dong XY, Zhang ZC, Yu RY, Tian QJ, Zhu XC. Extraction of information about individual trees from high-spatial-resolution UAV-acquired images of an orchard. Remote Sens, 2020, 12(1): 133,
DOI
|
20 |
Ecke S, Dempewolf J, Frey J, Schwaller A, Endres E, Klemmt HJ, Tiede D, Seifert T. UAV-based forest health monitoring: a systematic review. Remote Sens, 2022, 14: 3205,
DOI
|
21 |
Fawcett D, Bennie J, Anderson K. Monitoring spring phenology of individual tree crowns using drone-acquired NDVI data. Remote Sens Ecol Conserv, 2021, 7: 227-244,
DOI
|
22 |
Feng L, Chen S, Zhang C, Zhang Y, He Y. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Comput Electron Agric, 2021, 182: 106033,
DOI
|
23 |
Gallardo-Salazar JL, Pompa-García M. Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: applications in a pine clonal orchard. Remote Sens, 2020, 12: 24,
DOI
|
24 |
Gallardo-Salazar JL, Pompa-García M, Aguirre-Salado CA, López-Serrano PM, Meléndez-Soto A. Drones: tecnología con futuro promisorio en la gestión forestal. Rev Mex Ciencias For, 2020, 11(61): 27-50,
DOI
|
25 |
Garrity SR, Vierling LA, Smith AMS, Falkowski MJ, Hann DB. Automatic detection of shrub location, crown area, and cover using spatial wavelet analysis and aerial photography. Can J Remote Sens, 2008, 34: S376-S384,
DOI
|
26 |
Ghebrezgabher MG, Yang T, Yang X, Wang X, Khan M. Extracting and analyzing forest and woodland cover change in Eritrea based on Landsat data using supervised classification. Egypt J Remote Sens Sp Sci, 2016, 19: 37-47,
DOI
|
27 |
Gómez-Baggethun E, de Groot R, Lomas PL, Montes C. The history of ecosystem services in economic theory and practice: from early notions to markets and payment schemes. Ecol Econ, 2010, 69: 1209-1218,
DOI
|
28 |
González-Cásares M, Pompa-García M, Camarero JJ. Differences in climate–growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees, 2017, 31: 531-544,
DOI
|
29 |
Groos AR, Bertschinger TJ, Kummer CM, Erlwein S, Munz L, Philipp A. The potential of low-cost UAV and open-source photogrammetry software for high-resolution monitoring of alpine glaciers: a case study from the Kanderfirn (Swiss Alps). Geosciences, 2019, 9(8): 356,
DOI
|
30 |
Grybas H, Congalton RG. A comparison of multi-temporal RGB and multispectral UAS imagery for tree species classification in heterogeneous new hampshire forests. Remote Sens, 2021, 13(13): 2631,
DOI
|
31 |
Hajek P, Link RM, Nock C, Bauhus J, Gebauer T, Gessler A, Kovach K, Messier C, Paquette A, Saurer M, Scherer-Lorenzen M, Rose L, Schuldt B. Mutually inclusive mechanisms of drought-induced tree mortality. Glob Change Biol, 2020, 28: 3365-3378,
DOI
|
32 |
Herrera-Soto G, González-Cásares M, Marín Pompa-García J, Camarero RS-M. Growth of Pinus cembroides Zucc. in response to hydroclimatic variability in four sites forming the species latitudinal and longitudinal distribution limits. Forests, 2018, 9(7): 440,
DOI
|
33 |
Holopainen M, Vastaranta M, Hyyppä J. Outlook for the next generation’s precision forestry in Finland. Forests, 2014, 5: 1682-1694,
DOI
|
34 |
Huang S, Tang L, Hupy JP, Wang Y, Shao G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J Forestry Res, 2021, 32: 1-6,
DOI
|
35 |
Jing L, Hu B, Noland T, Li J. An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS J Photogramm Remote Sens, 2012, 70: 88-98,
DOI
|
36 |
Kovalev A, Soukhovolsky V. Analysis of forest stand resistance to insect attack according to remote sensing data. Forests, 2021, 12: 1188,
DOI
|
37 |
Larsen M, Eriksson M, Descombes X, Perrin G, Brandtberg T, Gougeon FA. Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. Int J Remote Sens, 2011, 32: 5827-5852,
DOI
|
38 |
Lechner AM, Foody GM, Boyd DS. Applications in remote sensing to forest ecology and management. One Earth, 2020, 2: 405-412,
DOI
|
39 |
Lehmann J, Nieberding F, Prinz T, Knoth C. Analysis of unmanned aerial system-based CIR images in forestry—a new perspective to monitor pest infestation levels. Forests, 2015, 6: 594-612,
DOI
|
40 |
Li J, Wang S, Qin N, Liu X, Jin L. Vegetation index reconstruction and linkage with drought for the source region of the Yangtze river based on tree-ring data. Chinese Geogr Sci, 2021, 31: 684-695,
DOI
|
41 |
Lindsay JB. Whitebox GAT: a case study in geomorphometric analysis. Comput Geosci, 2016, 95: 75-84,
DOI
|
42 |
Lu H, Fan TX, Ghimire P, Deng L. Experimental evaluation and consistency comparison of UAV multispectral minisensors. Remote Sens, 2020, 12(16): 2542,
DOI
|
43 |
Magney TS, Eitel JUH, Huggins DR, Vierling LA. Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agr Forest Meteorol, 2016, 217: 46-60,
DOI
|
44 |
Mancino G, Nolè A, Ripullone F, Ferrara A. Landsat TM imagery and NDVI differencing to detect vegetation change: assessing natural forest expansion in Basilicata, southern Italy. Iforest, 2014, 7: 75-84,
DOI
|
45 |
Maselli F. Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote Sens Environ, 2004, 89: 423-433,
DOI
|
46 |
McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, Ogle K, Poulter B, Pugh TAM, Seidl R, Turner MG, Uriarte M, Walker AP, Xu C. Pervasive shifts in forest dynamics in a changing world. Science, 2020,
DOI
|
47 |
Meneses-Tovar CL. NDVI as indicator of degradation. Unasylva, 2011, 62: 39-46
|
48 |
Michez A, Piégay H, Lisein J, Claessens H, Lejeune P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ Monit Assess, 2016, 188: 146,
DOI
|
49 |
Mitchell JJ, Glenn NF, Anderson MO, Hruska RC, Halford A, Baun C, Nydegger N (2012) Unmanned aerial vehicle (UAV) hyperspectral remote sensing for dryland vegetation monitoring. In: 2012 4th workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS). pp 1–10
|
50 |
Modica G, Messina G, de Luca G, Fiozzo V, Praticò S. Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput Electron Agric, 2020, 175: 105500,
DOI
|
51 |
Monteiro LA, Sentelhas PC, Pedra GU. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int J Climatol, 2018, 38: 1571-1581,
DOI
|
52 |
|
53 |
Pacheco A, Camarero JJ, Pompa-García M, Battipaglia G, Voltas J, Carrer M. Growth, wood anatomy and stable isotopes show species-specific couplings in three Mexican conifers inhabiting drought-prone areas. Sci Total Environ, 2020, 698: 134055,
DOI
|
54 |
|
55 |
Pedrono M, Locatelli B, Ezzine-de-Blas D, Pesche D, Morand S, Binot A. Torquebiau E. Impact of climate change on ecosystem services. Climate Change and Agriculture Worldwide, 2016 Netherlands, Dordrecht Springer 251-261,
DOI
|
56 |
Perevochtchikova M, Flores JÁH, Marín W, Flores AL, Bueno AR, Negrete IAR. Systematic review of integrated studies on functional and thematic ecosystem services in Latin America, 1992–2017. Ecosystem Services, 2019, 36: 100900,
DOI
|
57 |
Pesaresi S, Mancini A, Casavecchia S. Recognition and characterization of forest plant communities through remote-sensing NDVI time series. Diversity, 2020, 12: 313,
DOI
|
58 |
|
59 |
Pompa-García M, Zúñiga-Vásquez J, Treviño-Garza E. Pompa-García M, Camarero JJ. A dendro-spatial analysis in tree growth provides insights into forest. Latin American Dendroecology, 2020 Cham Springer 247-262,
DOI
|
60 |
Pompa-García M, González-Cásares M, Gazol A, Camarero JJ. Run to the hills: forest growth responsiveness to drought increased at higher elevation during the late 20th century. Sci Total Environ, 2021, 772: 145286,
DOI
|
61 |
Popescu SC, Wynne RH. Seeing the trees in the forest. Photogramm Eng Remote Sens, 2004, 70: 589-604,
DOI
|
62 |
Pravalie R, Sîrodoev I, Peptenatu D. Detecting climate change effects on forest ecosystems in Southwestern Romania using Landsat TM NDVI data. J Geogr Sci, 2014, 24: 815-832,
DOI
|
63 |
QGIS Core Team (2021) A free open source. Geogr. Inf. Syst. https://qgis.org/. [Accessed on 06.01.2021]
|
64 |
Qiu L, Jing LH, Hu BX, Li H, Tang YW. A new individual tree crown delineation method for high resolution multispectral imagery. Remote Sens, 2020, 12(3): 585,
DOI
|
65 |
|
66 |
Ramli MF, Tahar KN. Homogeneous tree height derivation from tree crown delineation using Seeded Region Growing (SRG) segmentation. Geo Spatial Inf Sci, 2020, 23: 195-208,
DOI
|
67 |
Rodríguez-Catón M, Villalba R, Morales M, Srur A. Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia Argentina. Ecosphere, 2016, 7: e01390,
DOI
|
68 |
Sankey TT, McVay J, Swetnam TL, McClaran MP, Heilman P, Nichols M. UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sens Ecol Con, 2018, 4: 20-33,
DOI
|
69 |
Socorro González-Elizondo M, Martha González-Elizondo JA, Tena-Flores LR-G, Lorena López-Enríquez I. Vegetación de la sierra madre occidental, México: una síntesis. Acta Botanica Mexicana, 2022,
DOI
|
70 |
Sona G, Pinto L, Pagliari D, Passoni D, Gini R. Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Sci Informatics, 2014, 7: 97-107,
DOI
|
71 |
|
72 |
Thapa S, Garcia Millan VE, Eklundh L. Assessing forest phenology: a multi-scale comparison of near-surface (UAV, spectral reflectance sensor, Phenocam) and satellite (MODIS, Sentinel-2) remote sensing. Remote Sens, 2021, 13: 1597,
DOI
|
73 |
Torresan C, Benito Garzón M, O’Grady M, Robson TM, Picchi G, Panzacchi P, Tomelleri E, Smith M, Marshall J, Wingate L, Tognetti R, Rustad LE, Kneeshaw D. A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can J Forest Res, 2021, 51: 1751-1765,
DOI
|
74 |
Villanueva Daz J, Cerano Paredes J, Rosales Mata S, Arrocena Lpez JC, Stahle DW, Ruiz Corral JA, Martnez Sifuentes AR. Variabilidad hidroclimática reconstruida con anillos de árboles para la cuenca alta del Río Mezquital, Durango. Rev Mex Ciencias Agrícolas, 2014, 10: 1897-1912
|
75 |
Wang Z, Lyu L, Liu W, Liang H, Huang J, Zhang QB. Topographic patterns of forest decline as detected from tree rings and NDVI. CATENA, 2021, 198: 105011,
DOI
|
76 |
Wong CYS, D’Odorico P, Bhathena Y, Arain MA, Ensminger I. Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sens Environ, 2019, 233: 111407,
DOI
|
77 |
Zhang J, You S, Gruenwald L (2015) Efficient parallel zonal statistics on large-scale global biodiversity data on GPUs. In: BigSpatial’15: Proceedings of the 4th international ACM SIGSPATIAL WORKSHOP on analytics for big geospatial data. pp 35–44
|