1 |
Adams MA, Shen Z. Introduction to the characteristics, impacts and management of forest fires in China. For Ecol Manag, 2015, 356: 1-1,
DOI
|
2 |
Baskent EZ, Keles S. Developing alternative forest management planning strategies incorporating timber, water and carbon values: an examination of their interactions. Environ Model Assess, 2009, 14(4): 467-480,
DOI
|
3 |
Chen M, Liu Q, Zhang J, Chen S, Zhang C. XGBoost-based algorithm for post-fault transient stability status prediction. Power Syst Technol, 2020, 44(03): 1026-1034
|
4 |
Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. The 22nd ACM SIGKDD International Conference.
|
5 |
Clark JS. Effect of climate on fire regimes in northwestern Minesota. Nature, 1988, 334: 233-235,
DOI
|
6 |
Davies D, Ilavajhala S, Wong M, Justice C. Fire information for resource management system: archiving and distributing MODIS active fire data. Geosci Remote Sens IEEE Trans, 2009, 47: 72-79,
DOI
|
7 |
DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, 1999, 284(5417): 1177-1179,
DOI
|
8 |
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev, 2016, 9(5): 1937-1958,
DOI
|
9 |
Gao J. Middle and long term plan discussion of key problems to forest fire prevention in China. Forest Inventory and Planning, 2015, 40(01): 45-47+52 in Chinese
|
10 |
Gu X, Wu Z, Zhang Y, Yan S, Fu J, Du L. Prediction research of forest fires in Jiangxi province in the background of climate change. Acta Ecol Sin, 2020, 40(02): 667-677
|
11 |
Hantson S, Padilla M, Corti D, Chuvieco E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens Environ, 2013, 131: 152-159,
DOI
|
12 |
Hawbaker TJ, Radeloff VC, Stewart SI, Hammer RB, Keuler NS, Clayton MK. Human and biophysical influences on fire occurrence in the United States. Ecol Appl, 2013, 23(3): 565-582,
DOI
|
13 |
He Q, Wang M, Liu K, Li K, Jiang Z. GPRChinaTemp1km: a high-resolution monthly air temperature dataset for China (1951–2020) based on machine learning. Earth Syst Sci Data, 2021, 14(7): 3273-3292,
DOI
|
14 |
Hu H, Wei S, Wei S, Sun L. Effect of fire disturbance on forest ecosystem carbon cycle under the background of climate warming. J Catastrophol, 2012, 27(04): 37-41 in Chinese
|
15 |
Hu Y, Zhao FJ, Chen F, Shu LF. Impacts of global warming and large-scale climate fluctuation on forest fires and forest carbon emissions. Terr Ecosyst Conserv, 2021, 1(01): 75-81 in Chinese
|
17 |
Hurtt GC, Chini L, Sahajpal R, Frolking S, Bodirsky BL, Calvin K, Doelman JC, Fisk J, Fujimori S, Klein Goldewijk K, Hasegawa T, Havlik P, Heinimann A, Humpenöder F, Jungclaus J, Kaplan J, Kennedy J, Krisztin T, Lawrence D, Lawrence P, Ma L, Mertz O, Pongratz J, Popp A, Poulter B, Riahi K, Shevliakova E, Stehfest E, Thornton P, Tubiello FN, van Vuuren DP, Zhang X. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci Model Dev, 2020, 13(11): 5425-5464,
DOI
|
18 |
Jiang J. National basic GIS 1:250,000 database design and application study. Remote Sens Inf, 1999, 04: 14-18 in Chinese
|
19 |
Jin H, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng, 2005, 17(3): 299-310,
DOI
|
20 |
Johnstone JF, Chapin F, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M. Fire, climate change, and forest resilience in interior Alaska. Can J for Res, 2010, 40: 1197-1209
|
21 |
Kastridis A, Stathis D, Sapountzis M, Theodosiou G. Insect outbreak and long-term post-fire effects on soil erosion in Mediterranean suburban forest. Land, 2022, 11(6): 911,
DOI
|
22 |
Kong F, Sun S. Spatial differentiation prediction of global land extreme precipitation intensity based on SSPs. J Catastrophol., 2021, 36(04): 107-112+118 in Chinese
|
23 |
Li C, Flannigan MD, Corns IGW. Influence of potential climate change on forest landscape dynamics of west-central Alberta. Can J For Res, 2000, 30: 1905-1912,
DOI
|
24 |
Li X, Wu W, Zhang C, Guo R. Influence of climate change on north-eastern of lnner Mongolia grassland forest fire. J Arid Land Res and Environ, 2011, 25(11): 6 in Chinese
|
25 |
Liu Z, Li T. Global warming trend accelerates sharply. Ecological Economy, 2019, 35(09): 1-4
|
26 |
Liu B, Xu M, Henderson M, Qi Y, Li Y. Taking China’s temperature: daily range, warming trends, and regional variations, 1955–2000. J Clim, 2004, 17(22): 4453-4462,
DOI
|
27 |
Liu H, Jiang D, Yang X, Luo C. Spatialization approach to 1 km grid GDP supported by remote sensing. Geo-Inf Sci, 2005, 7: 120-123
|
28 |
Liu Y, Stanturf J, Goodrick S. Trends in global wildfire potential in a changing climate. For Ecol Manag, 2010, 259(4): 685-697,
DOI
|
29 |
Liu Z, Yang J, Chang Y, Weisberg PJ, He HS. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob Change Biol, 2012, 18(6): 2041-2056,
DOI
|
30 |
Liu C, Zhang H, Wu J. Impact assessment of extreme precipitation in China under SSPs scenario. Environ Prot, 2021, 49(08): 29-34 in Chinese
|
31 |
Lucht W, Prentice CI, Myneni RB, Sitch S, FriedLingstein P. Climatic control of the high-Latitude vegetation greening trend and pinatubo effect. Science, 2002, 296(5573): 1687-1689,
DOI
|
32 |
Ma W, Feng Z, Cheng Z, Chen S, Wang F. Identifying forest fire driving factors and related impacts in China using random forest algorithm. Forests, 2020, 5: 1-26
|
33 |
Margiorou S, Kastridis A, Sapountzis M. Pre/post-fire soil erosion and evaluation of check-dams effectiveness in mediterranean suburban catchments based on field measurements and modeling. Land, 2022, 11: 1705,
DOI
|
34 |
Naderpour M, Rizeei HM, Khakzad N, Pradhan B. Forest fire induced Natech risk assessment: a survey of geospatial technologies. Reliab Eng Syst Saf, 2019, 191: 106558,
DOI
|
35 |
Neary DG, Klopatek CC, Debano LF, Ffolliott PF. Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag, 1999, 122: 51-71,
DOI
|
36 |
Price C, Rind D. Possible implications of global climate change on global lightning distributions and frequencies. J Geophy Res Atmos, 1994, 99(D5): 10823-10831,
DOI
|
37 |
Qiu Z, Feng Z, Song Y, Li M, Zhang P. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment. J Clean Prod, 2020, 252: 119715,
DOI
|
38 |
Qu L, Zhu Q, Zhu C, Zhang J. (2020) Monthly precipitation data set with 1 km resolution in China from 1960 to 2020. Science Data Bank; [accessed]. Mar. 22, 2022 [Online]. Available: https://doi.org/10.11922/sciencedb.01607. [Accessed: Jan. 04, 2022].
|
39 |
Ran YH, Li X, Lu L, Li ZY. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. Int J Geogr Inf Sci, 2012, 26(1–2): 169-191,
DOI
|
40 |
Shao Y, Feng Z, Sun L, Yang X, Li Y, Xu B, Chen Y. Mapping China’s risks of forest fire with machine learning. Forests, 2022, 13(6): 856,
DOI
|
41 |
Shao Y, Wang Z, Feng Z, Sun L, Yang X, Zheng J, Ma T. Assessment of China’s forest fire occurrence with deep learning, geographic information and multisource data. J Forestry Res, 2022,
DOI
|
42 |
Shaohong WU, Du Z, Yunhe Y, Erda L, Yinlong XU. Northward-shift of temperature zones in China’s eco-geographical study under future climate scenario. J Geog Sci, 2010, 20(5): 9
|
43 |
Shaojun H, Jin C, Ruixu G, Guijun W. (2012) The capability analysis on the characteristic selection algorithm of text categorization based on F1 measure value. In: Proceedings of the 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control.
|
44 |
Sun L, Wang Q, Wei S, Hu H, Guan D, Chen X. Response characteristics and prospect of forest fire disasters in the context of climate change in China. J Catastrophol, 2014, 29(01): 12-17 in Chinese
|
45 |
Syafrullah M, Salim NB. (2011) Using particle swarm optimization to improve the precision and recall of taxonomy extraction.In: Proceedings of the 2011 IEEE 9th international conference on dependable, autonomic and secure computing.
|
46 |
Szpakowski DM, Jensen JLR. A review of the applications of remote sensing in fire ecology. Remote Sens, 2019, 11(22): 2638,
DOI
|
47 |
Wang M, Shu L, Wang J, Tian X, Li H. Forest fuel characteristics and the impact of climate change on forest fires in southeast tibet. Fire Safe Sci, 2007, 1: 15-20 in Chinese
|
48 |
Wang X, Zhang L, Li J, Sun Y, Tian J, Han R. Study on xgboost improved method based on genetic algorithm and random forest. Comput Sci, 2020, 47(S2): 454-458+463 in Chinese
|
49 |
Wittenberg L, Malkinson D, Barzilai R. The differential response of surface runoff and sediment loss to wildfire events. CATENA, 2014, 121: 241-247,
DOI
|
50 |
Wotton M, Nock C, Flannigan M. Forest fire occurrence and climate change in Canada. Int J Wildland Fire, 2010, 19: 253-271,
DOI
|
51 |
Wu Z. Prediction research of the forest fire in Jiangxi province in the background of climate change. Acta Ecol Sin, 2020, 40(2): 667-667
|
52 |
Wu Z, He HS, Keane RE, Zhu Z, Wang Y, Shan Y. Current and future patterns of forest fire occurrence in China. Int J Wildland Fire, 2020, 29: 104-109,
DOI
|
53 |
Xin XG, Wu TW, Zhang J, Zhang F, Li WP, Zhang YW, Liu QX, Fang YJ, Jie WH, Zhang L, Dong M, Shi XL, Li JL, Chu M, Liu QX, Yan JH. Introduction of BCC models and its participation in CMIP6. Adv Clim Chang Res, 2019, 15(5): 533-539 in Chinese
|
54 |
Xu Y, Zhen J, Jiang X, Wang J. Mangrove species classification with UAV-based remote sensing data and XGBoost. Nat Remote Sens Bull, 2021, 25(03): 737-752,
DOI
|
55 |
|
56 |
Yang G, Pei Y, Song M. Evaluation and projection of precipitation in southwestern China using CMIP6 models. Open J Nat Sci, 2021, 9(6): 910-920, in Chinese
DOI
|
57 |
Yue C, Luo C, Shu L, Shen Z. A review on wildfire studies in the context of global change. Acta Ecol Sin, 2020, 40(02): 385-401
|
58 |
Zhang S, Zhu C, Chen Z. Research on forest fire meteorological environmental elements and large forest fires. J Nat Disasters, 2000, 02: 111-117 in Chinese
|
59 |
Zhang Y, Qin D, Yuan W, Jia B. Historical trends of forest fires and carbon emissions in China from 1988 to 2012: fire trends and carbon emissions. J Geophys Res-Biogeo, 2016, 121(9): 2506-2517,
DOI
|
60 |
Zhao F, Shu L. Study on the impact of climate anomalies on the occurrence of forest fires. Forest Fire Prev, 2007, 01(1): 21-23 in Chinese
|