1 |
Agarwal DA, Humphrey M, Beekwilder NF, Jackson KR, Goode MM, Ingen C. A data-centered collaboration portal to support global carbon-flux analysis. Concurr Comput Pract Exp, 2010, 22(17): 2323-2334,
DOI
|
2 |
Asner GP, Wessman CA, Archer S. Scale dependence of absorption of photosynthetically active radiation in terrestrial ecosystems. Ecol Appl, 1998, 8(4): 1003-1021,
DOI
|
3 |
Baret F, Weiss M, Allard D, Garrigue S, Leroy M, Jeanjean H, Fernandes R, Myneni R, Privette J, Morisette J (2021) VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products. https://hal.inrae.fr/hal-03221068. Accessed 29 Jan 2022
|
4 |
Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 2010, 329(5993): 834-838,
DOI
|
5 |
Bounoua L, Collatz G, Los S, Sellers P, Dazlich D, Tucker C, Randall D. Sensitivity of climate to changes in NDVI. J Clim, 2000, 13(13): 2277-2292,
DOI
|
6 |
Chason JW, Baldocchi DD, Huston MA. A comparison of direct and indirect methods for estimating forest canopy leaf area. Agric For Meteorol, 1991, 57(1–3): 107-128,
DOI
|
7 |
Chen JM. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests. IEEE Trans Geosci Remote Sens, 1996, 34(6): 1353-1368,
DOI
|
8 |
Chen SY, Liu LY, Zhang X, Liu XJ, Chen XD, Qian XJ, Xu Y, Xie DH. Retrieval of the fraction of radiation absorbed by photosynthetic components (FAPARgreen) for forest using a triple-source leaf-wood-soil layer approach. Remote Sens, 2019, 11(21): 2471,
DOI
|
9 |
Cheng YB, Zhang QY, Lyapustin AI, Wang YJ, Middleton EM. Impacts of light use efficiency and fPAR parameterization on gross primary production modeling. Agric For Meteorol, 2014, 189–190: 187-197,
DOI
|
10 |
Collatz GJ. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol, 1991, 54(2–4): 107-136,
DOI
|
11 |
DAAC O. MODIS and VIIRS land products global subsetting and visualization tool, 2018 Oak Ridge, Tennessee, USA ORNL DAAC
|
12 |
Delpierre N, Berveiller D, Granda E, Dufrêne E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol, 2016, 210(2): 459-470,
DOI
|
13 |
Farquhar GD, Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1): 78-90,
DOI
|
14 |
Ferster CJ, Trofymow JT, Coops NC, Chen BZ, Black TA. Comparison of carbon-stock changes, eddy-covariance carbon fluxes and model estimates in coastal Douglas-fir stands in British Columbia. For Ecosyst, 2015, 2(1): 1-19,
DOI
|
15 |
Field CB, Randerson JT, Malmström CM. Global net primary production: combining ecology and remote sensing. Remote Sens Environ, 1995, 51(1): 74-88,
DOI
|
16 |
Gitelson AA. Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean. Remote Sens Lett, 2019, 10(3): 283-291,
DOI
|
17 |
Gitelson AA, Viña A, Verma SB, Rundquist DC, Arkebauer TJ, Keydan G, Leavitt B, Ciganda V, Burba GG, Suyker AE. Relationship between gross primary production and chlorophyll content in crops: implications for the synoptic monitoring of vegetation productivity. J Geophys Res, 2006,
DOI
|
18 |
Gitelson AA, Peng Y, Arkebauer TJ, Suyker AE. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production. J Plant Physiol, 2015, 177: 100-109,
DOI
|
19 |
Hanan NP, Kabat P, Dolman AJ, Elbers JA. Photosynthesis and carbon balance of a Sahelian fallow savanna. Glob Chang Biol, 1998, 4(5): 523-538,
DOI
|
20 |
Hanan NP, Burba G, Verma SB, Berry JA, Suyker A, Walter-Shea EA. Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption. Glob Chang Biol, 2002, 8(6): 563-574,
DOI
|
21 |
Huete A, Liu HQ, Batchily K, Leeuwen W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens Environ, 1997, 59(3): 440-451,
DOI
|
22 |
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002, 83(1–2): 195-213,
DOI
|
23 |
Keenan TF, Prentice IC, Canadell JG, Williams CA, Wang H, Raupach M, Collatz GJ. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun, 2016, 7(1): 1-10,
DOI
|
24 |
Korson L, Drost-Hansen W, Millero FJ. Viscosity of water at various temperatures. J Phys Chem, 1969, 73(1): 34-39,
DOI
|
25 |
Kurachi N, Hagihara A, Hozumi K. Effect of light interception by non-photosynthetic organs on canopy photosynthetic production. Ecol Res, 1989, 4(2): 187-197,
DOI
|
26 |
Lambers H, Chapin FS, Pons TL. Plant physiological ecology, 2008 Springer,
DOI
|
27 |
Landsberg J, Waring R, Coops N. Performance of the forest productivity model 3-PG applied to a wide range of forest types. For Ecol Manag, 2003, 172(2–3): 199-214,
DOI
|
28 |
Liu ZJ, Wu CY, Peng DL, Wang SS, Gonsamo A, Fang B, Yuan WP. Improved modeling of gross primary production from a better representation of photosynthetic components in vegetation canopy. Agric For Meteorol, 2017, 233: 222-234,
DOI
|
29 |
Liu N, Oishi AC, Miniat CF, Bolstad P. An evaluation of ECOSTRESS products of a temperate montane humid forest in a complex terrain environment. Remote Sens Environ, 2021, 265: 112662,
DOI
|
30 |
Monteith J. Solar radiation and productivity in tropical ecosystems. J Appl Ecol, 1972, 9(3): 747-766,
DOI
|
31 |
Nestola E, Calfapietra C, Emmerton CA, Wong C, Thayer DR, Gamon JA. Monitoring grassland seasonal carbon dynamics, by integrating MODIS NDVI, proximal optical sampling, and eddy covariance measurements. Remote Sens, 2016, 8(3): 260,
DOI
|
32 |
Nestola E (2017) Monitoring productivity of plant ecosystems: integration of optical, flux and ecophysiological measurements. Università degli studi della Tuscia—Viterbo. http://hdl.handle.net/2067/3094
|
33 |
Nilson T. A theoretical analysis of the frequency of gaps in plant stands. Agric Meteorol, 1971, 8: 25-38,
DOI
|
34 |
Nilson T. Inversion of gap frequency data in forest stands. Agric For Meterol, 1999, 98: 437-448,
DOI
|
35 |
Peng Y, Gitelson AA, Sakamoto T. Remote estimation of gross primary productivity in crops using MODIS 250 m data. Remote Sens Environ, 2013, 128: 186-196,
DOI
|
36 |
Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett, 2014, 17(1): 82-91,
DOI
|
37 |
Prince SD, Goward SN. Global primary production: a remote sensing approach. J Biogeogr, 1995, 22: 815-835,
DOI
|
38 |
Raich J, Rastetter E, Melillo JM, Kicklighter DW, Steudler P, Peterson B, Grace A, Moore B, Vorosmarty CJ. Potential net primary productivity in South America: application of a global model. Ecol Appl, 1991, 1(4): 399-429,
DOI
|
39 |
Rödig E, Huth A, Bohn F, Rebmann C, Cuntz M. Estimating the carbon fluxes of forests with an individual-based forest model. For Ecosyst, 2017, 4(1): 1-10,
DOI
|
40 |
Rossini M, Meroni M, Migliavacca M, Manca G, Cogliati S, Busetto L, Picchi V, Cescatti A, Seufert G, Colombo R. High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field. Agric For Meteorol, 2010, 150(9): 1283-1296,
DOI
|
41 |
Ruimy A, Dedieu G, Saugier B. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Glob Biogeochem Cycles, 1996, 10(2): 269-285,
DOI
|
42 |
Running SW, Thornton PE, Nemani R, Glassy JM. Global terrestrial gross and net primary productivity from the earth observing system, 2000 New York Springer,
DOI
|
43 |
Running SW, Nemani RR, Heinsch FA, Zhao MS, Reeves M, Hashimoto H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 2004, 54(6): 547-560,
DOI
|
44 |
Schaaf C, Wang Z (2015) MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF adjusted ref daily L3 Global-500m V006. NASA EOSDIS land processes DAAC
|
45 |
Schaefer K, Collatz GJ, Tans P, Denning AS, Baker I, Berry J, Prihodko L, Suits N, Philpott A. Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial carbon cycle model. J Geophys Res, 2008,
DOI
|
46 |
Sellers PJ, Tucker CJ, Collatz GJ, Los SO, Justice CO, Dazlich DA, Randall DA. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J Clim, 1996, 9(4): 706-737,
DOI
|
47 |
Wu CY, Munger JW, Niu Z, Kuang D. Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sens Environ, 2010, 114(12): 2925-2939,
DOI
|
48 |
Wu GH, Guan KY, Jiang CY, Peng B, Kimm H, Chen M, Yang X, Wang S, Suyker AE, Bernacchi CJ. Radiance-based NIRv as a proxy for GPP of corn and soybean. Environ Res Lett, 2020, 15(3): 034009,
DOI
|
49 |
Xiao XM, Braswell B, Zhang QY, Boles S, Frolking S, Moore B III. Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote Sens Environ, 2003, 84(3): 385-392,
DOI
|
50 |
Xiao XM, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang QY, Moore B III. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ, 2004, 89(4): 519-534,
DOI
|
51 |
Xiao XM, Zhang QY, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B III, Ojima D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ, 2004, 91(2): 256-270,
DOI
|
52 |
Xiao XM, Zhang QY, Saleska S, Hutyra L, Camargo PD, Wofsy S, Frolking S, Boles S, Keller M, Moore B III. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens Environ, 2005, 94(1): 105-122,
DOI
|
53 |
Yan M, Li ZY, Tian X, Zhang L, Zhou Y. Improved simulation of carbon and water fluxes by assimilating multi-layer soil temperature and moisture into process-based biogeochemical model. For Ecosyst, 2019, 6(1): 1-15,
DOI
|
54 |
Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu YM, Law BE, Stoy PC, Vesala T, Wofsy SC . Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol, 2007, 143(3–4): 189-207,
DOI
|
55 |
Yuan WP, Liu SG, Yu GR, Bonnefond JM, Chen JQ, Davis K, Desai AR, Goldstein AH, Gianelle D, Rossi F. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ, 2010, 114(7): 1416-1431,
DOI
|
56 |
Yuan WP, Liu D, Dong WJ, Liu SG, Zhou GS, Yu GR, Zhao TB, Feng JM, Ma ZG, Chen JQ, Chen Y, Chen SP, Han SJ, Huang JP, Li LH, Liu HZ, Liu SM, Ma MG, Wang YF, Xia JZ, Xu WF, Zhang Q, Zhao XQ, Zhao L. Multiyear precipitation reduction strongly decreases carbon uptake over northern China. J Geophys Res Biogeosciences, 2014, 119(5): 881-896,
DOI
|
57 |
Zhang QY, Cheng YB, Lyapustin AI, Wang YJ, Gao F, Suyker A, Shashi V, Middleton EM. Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR. Remote Sens Environ, 2014, 153: 1-6,
DOI
|
58 |
Zheng Y, Shen RQ, Wang YW, Li XQ, Liu SG, Liang SL, Chen JM, Ju WM, Zhang L, Yuan WP. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst Sci Data, 2020, 12(4): 2725-2746,
DOI
|