Research paper

Mapping the habitat suitability of Ottelia species in Africa

  • Boniface K. Ngarega ,
  • John M. Nzei ,
  • Josphat K. Saina ,
  • Marwa Waseem A. Halmy ,
  • Jin-Ming Chen ,
  • Zhi-Zhong Li
Expand
  • a. Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China;
    b. Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China;
    c. University of Chinese Academy of Sciences, Beijing, 100049, China;
    d. Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China;
    e. Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt

Received date: 2021-05-08

  Revised date: 2021-12-28

  Online published: 2022-10-14

Supported by

We are grateful to John M.Ndung'u for early consultations on this study's statistical approach.In addition,we would like to thank Drs.Valerie F.Masocha (Xishuangbanna Tropical Botanical Garden) and Yeshitila Mekbib (Ethiopian Biodiversity Institute) for thought-provoking discussions regarding the study.Thanks are also due to the Kasanka trust for providing logistics during our fieldwork in Zambia.We acknowledge the Department of National Parks and Wildlife,Zambia,for the competent authority of permits during our fieldwork in Zambia.We thank the anonymous reviewers for their suggestions and comments on an earlier draft of our manuscript.This research was fundedfunded by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB 31000000),the National Natural Science Foundation of China (Nos.32070253 and 32100186),and the Sino-Africa Joint Research Center (No.SAJC201322).

Abstract

Understanding the influence of environmental covariates on plant distribution is critical, especially for aquatic plant species. Climate change is likely to alter the distribution of aquatic species. However, knowledge of this change on the burden of aquatic macroorganisms is often fraught with difficulty. Ottelia, a model genus for studying the evolution of the aquatic family Hydrocharitaceae, is mainly distributed in slow-flowing creeks, rivers, or lakes throughout pantropical regions in the world. Due to recent rapid climate changes, natural Ottelia populations have declined significantly. By modeling the effects of climate change on the distribution of Ottelia species and assessing the degree of niche similarity, we sought to identify high suitability regions and help formulate conservation strategies. The models use known background points to determine how environmental covariates vary spatially and produce continental maps of the distribution of the Ottelia species in Africa. Additionally, we estimated the possible influences of the optimistic and extreme pessimistic representative concentration pathways scenarios RCP 4.5 and RCP 8.5 for the 2050s. Our results show that the distinct distribution patterns of studied Ottelia species were influenced by topography (elevation) and climate (e.g., mean temperature of driest quarter, annual precipitation, and precipitation of the driest month). While there is a lack of accord in defining the limiting factors for the distribution of Ottelia species, it is clear that water-temperature conditions have promising effects when kept within optimal ranges. We also note that climate change will impact Ottelia by accelerating fragmentation and habitat loss. The assessment of niche overlap revealed that Ottelia cylindrica and O. verdickii had slightly more similar niches than the other Ottelia species. The present findings identify the need to enhance conservation efforts to safeguard natural Ottelia populations and provide a theoretical basis for the distribution of various Ottelia species in Africa.

Cite this article

Boniface K. Ngarega , John M. Nzei , Josphat K. Saina , Marwa Waseem A. Halmy , Jin-Ming Chen , Zhi-Zhong Li . Mapping the habitat suitability of Ottelia species in Africa[J]. Plant Diversity, 2022 , 44(05) : 468 -480 . DOI: 10.1016/j.pld.2021.12.006

References

[1] Aiello L.M.E., Boria, R.A., Radosavljevic, A., et al., 2015. spThin:An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541-545
[2] Alahuhta, J., Antikainen, H., Hjort, J., et al., 2020. Current climate overrides historical effects on species richness and range size of freshwater plants in Europe and North America. J. Ecol. 108, 1262-1275
[3] Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models:prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223-1232
[4] Austin, M.P. 2002. Spatial prediction of species distribution:an interface between ecological theory and statistical modeling. Ecol. Modell. 157, 101-118
[5] Bailie E.M., Hihon-Taylor C., Stuart SN, eds, 2004. IUCN Red List of Threatened Species:A Global Species Assessment. Cambridge (United Kingdom):IUCN
[6] Barbet-Massin, M., Jiguet, F., Albert, C. H., et al., 2012. Selecting pseudo-absences for species distribution models:how, where and how many? Methods Ecol. Evol. 3, 327-338
[7] Butchart, S.H., Walpole, M., Collen, B., et al., 2010. Global biodiversity:indicators of recent declines. Science 328, 1164-1168
[8] Cave, L., Beekman, H.E., Weaver, J., 2003. Impact of Climate Change on Groundwater Recharge Estimation. In:Xu, Y. and Beekman, H.E.(eds.) Groundwater recharge estimation in southern Africa. UNESCO, Paris. 189-197
[9] Corlett, R.T. 2016. Plant diversity in a changing world:status, trends, and conservation needs. Plant Divers. 38, 10-16
[10] Cook C.D., Urmi-Konig K., 1984. A revision of the genus Ottelia (Hydrocharitaceae). 2. The species of Eurasia, Australasia and America. Aquat. Bot. 20, 131-177
[11] Cook, C.D., Symoens, J.J., Urmi-Konig, K., 1983. A revision of the genus Ottelia (Hydrocharitaceae) I. Generic considerations. Aquat. Bot. 18, 263-274
[12] Crossley, M.N., Dennison, W.C., Williams, R.R., et al., 2002. The interaction of water flow and nutrients on aquatic plant growth. Hydrobiologia 489, 63-70
[13] De Dominicis, F., Pallini, C., Annalisa, S., 2015. Rivers, Dams and Large-scale Hydraulic Works in Post-colonial Africa. Africa's Giants, 148-161
[14] De Wit, M., Stankiewicz, J., 2006. Changes in surface water supply across Africa with predicted climate change. Science 311, 1917-1921
[15] Duclos, T.R., DeLuca, W.V., King, D.I., 2019. Direct and indirect effects of climate on bird abundance along elevation gradients in the Northern Appalachian mountains. Divers. Distrib. 25, 1670-1683
[16] Elith, J., Leathwick, J.R., 2009. Species distribution models:ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677-697
[17] Elith, J., Phillips, S.J., Hastie, T., et al., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57
[18] Fan, X.R., Njeri, H.K., Li, W., et al., 2019. Abundant historical gene flow within and among river systems for populations of Ottelia acuminata var. jingxiensis, an endangered macrophyte from southwest China. Aquat. Bot. 157, 1-9
[19] Feeley, K. J., Silman, M. R., 2011. Keep collecting:accurate species distribution modeling requires more collections than previously thought. Divers. Distrib. 17, 1132-1140
[20] Ferrer-Gallego, P.P., Boisset, F., Simpson, D.A., 2016. Typification of the African endemic plant Ottelia exserta (Hydrocharitaceae). Kew Bull. 71, 32
[21] Fick, S. E., Hijmans, R. J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315
[22] Garcia, G.J., Heino, J., Baastrup-Spohr, L., et al., 2020. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Sci. Total Environ. 723, 138021
[23] Gent, P.R., Danabasoglu, G., Donner, L.J., et al., 2011. The community climate system model version 4. J. Clim. 24, 4973-4991
[24] Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat Suitability and Distribution Models:With Applications in R; Cambridge University Press:Cambridge, UK. ISBN 0521765137
[25] Guo, J.L., Yu, Y.H., Zhang, J.W., et al., 2019. Conservation strategy for aquatic plants:endangered Ottelia acuminata (Hydrocharitaceae) as a case study. Biodivers. Conserv. 28, 1533-1548
[26] Hanski, I., Zurita, G.A., Bellocq, M.I., et al., 2013. Species-fragmented area relationship. Proc. Natl. Acad. Sci. U.S.A. 110, 12715-12720
[27] Hardin, G., 1960. The competitive exclusion principle. Science 131, 1292-1297
[28] Heikkinen, R. K., Luoto, M., Araujo, M. B., et al., 2006. Methods and uncertainties in bioclimatic envelope modeling under climate change. Prog. Phys. Geog. 30, 751-777
[29] Heneidy, S.Z., Halmy, M.W.A., Fakhry, A.M., et al., 2019. The status and potential distribution of Hydrocotyle umbellata L. and Salvinia auriculata Aubl. under climate change scenarios. Aquat. Ecol. 53, 509-528
[30] Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., et al., 2005. Confronting a biome crisis:global disparities of habitat loss and protection. Ecol. Lett. 8, 23-29
[31] Iannella, M., D'Alessandro, P., Longo, S., et al., 2019. New records and potential distribution by Ecological Niche Modeling of Monoxia obesula in the Mediterranean area. Bull. Insectol. 71, 135-142
[32] Intergovernmental Panel on Climate Change. Part B:Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014:Impacts, Adaptation, and Vulnerability; Barros, V.R., Field, C.B., Dokken, D.J., et al., Eds.; Cambridge University Press:Cambridge, UK; New York, NY, USA, 2014, 1-669
[33] Ito, Y., Tanaka, N., Barfod, A. S., et al., 2019. Molecular phylogenetic species delimitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J. Plant Res. 132, 335-344
[34] Kennedy, M.P., Lang, P., Grimaldo, J.T., et al., 2015. Environmental drivers of aquatic macrophyte communities in southern tropical African rivers:Zambia as a case study. Aquat. Bot. 124, 19-28
[35] Lewis, L.A., Berry, L., 1988. African environments and resources. Unwin Hayman Ltd., London, 404
[36] Li, Z.Z., Lu, M.X., Gichira, A.W., et al., 2019. Genetic diversity and population structure of Ottelia acuminata var. jingxiensis, an endangered endemic aquatic plant from southwest China. Aquat. Bot. 152, 20-26
[37] Li, Z.Z., Ngarega, B.K., Lehtonen, S., et al., 2020a. Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses. J. Plant Res. 133, 372-381
[38] Li, Z.Z., Lehtonen, S., Martins, K., et al., 2020b. Phylogenomics of the aquatic plant genus Ottelia (Hydrocharitaceae):Implications for historical biogeography. Mol. Phylogenet. Evol. 152, 106939
[39] Liu, C., Newell, G., White, M., 2016. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337-348
[40] McLaughlin, B.C., Ackerly, D.D., Klos, P.Z., et al., 2017. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941-2961
[41] McSweeney, C.F., Jones, R.G., Lee, R.W., et al., 2015. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237-3260
[42] Misra, A.K. 2014. Climate change and challenges of water and food security. Int. J. Sustain. Built. Environ. 3, 153-165
[43] Monsarrat, S., Jarvie, S., Svenning, J.C., 2019. Anthropocene refugia:integrating history and predictive modelling to assess the space available for biodiversity in a human-dominated world. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374, 20190219
[44] Muscarella, R., Galante, P.J., Soley G.M., et al., 2014. ENM eval:An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198-1205
[45] Murphy, K., Efremov, A., Davidson, T.A., et al., 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquat. Bot. 158, 103-127
[46] Ngarega, B.K., Gichira, A.W., Karichu, M.J., et al., 2021a. Genetic diversity and population structure of Ottelia ulvifolia (Hydrocharitaceae) from three freshwater ecoregions in Zambia. Aquat. Bot. 103412
[47] Ngarega, B.K., Masocha, V.F., Schneider, H. 2021b. Forecasting the effects of bioclimatic characteristics and climate change on the potential distribution of Colophospermum mopane in southern Africa using Maximum Entropy (Maxent). Ecol. Inform. 65, 101419
[48] Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 26, 137-158
[49] Nyong, A., Niang-Diop, I., 2006. Impacts of climate change in the tropics:the African experience. Avoiding dangerous climate change, Cambridge University Press:Cambridge, UK, 237
[50] Nzei, J.M., Ngarega, B.K., Mwanzia, V.M., et al., 2021. The past, current, and future distribution modeling of four water lilies (Nymphaea) in Africa indicates varying suitable habitats and distribution in climate change. Aquat. Bot. 103416
[51] Parmesan, C., Hanley, M.E., 2015. Plants and climate change:complexities and surprises. Ann. Bot. 116, 849-864
[52] Pennino, M.G., Coll, M., Albo-Puigserver, M., et al., 2020. Current and future influence of environmental factors on small pelagic fish distributions in the Northwestern Mediterranean Sea. Front. Mar. Sci. 7, 622
[53] Phillips, S.J., Anderson, R.P., Schapire, RE, 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231-259
[54] Pressey, R.L., Cabeza, M., Watts, M.E., et al., 2007. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583-592
[55] Rissler, L.J., Apodaca, J.J., 2007. Adding more ecology into species delimitation:ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst. Biol. 56, 924-942
[56] Radosavljevic, A., and Anderson, R.P., 2014. Making better Maxent models of species distributions:complexity, overfitting and evaluation. J. Biogeogr. 41, 629-643
[57] R-Core-Team, 2019. R:A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing
[58] Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27-39
[59] Serdeczny, O., Adams, S., Baarsch, F., et al., 2017. Climate change impacts in Sub-Saharan Africa:from physical changes to their social repercussions. Reg. Environ. Change. 17, 1585-1600
[60] Shepard, D., 2019. Global warming:Severe consequences for Africa:New report projects greater temperature increases. Africa Renewal, 32, 34-34
[61] Symoens J.J., 2009. Hydrocharitaceae. Flora Zambesiaca 12, 31-32
[62] van Proosdij, A.S., Sosef, M.S., Wieringa, J.J., et al., 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542-552
[63] van Vuuren, D.P., Edmonds, J., Kainuma, M., et al., 2011. The representative concentration pathways:an overview. Clim. Change 109, 5
[64] Walck, J.L., Hidayati, S.N., Dixon, K.W., et al., 2011. Climate change and plant regeneration from seed. Glob. Change Biol. 17, 2145-2161
[65] Wan, J.N., Mbari, N.J., Wang, S.W., et al., 2021. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers. 43, 117-124
[66] Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism:quantitative approaches to niche evolution. Evolution 62, 2868-2883
[67] Warren, D.L., Glor, R.E., Turelli, M., 2010. ENMTools:a toolbox for comparative studies of environmental niche models. Ecography 33, 607-611
[68] Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent:The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335-342
[69] Wenger, S.J., Olden, J.D., 2012. Assessing transferability of ecological models:an underappreciated aspect of statistical validation. Methods Ecol. Evol. 3, 260-267
[70] Wiens, J.J., Graham, C.H., 2005. Niche conservatism:integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519-539
[71] Wilson, K.A., McBride, M.F., Bode, M., et al., 2006. Prioritizing global conservation efforts. Nature 440, 337-340
[72] Zhang, P., Kuramae, A., Van Leeuwen, C.H., et al., 2020. Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability. Front. Plant Sci. 11, 58
[73] Zhai, S.H., Yin, G.S., Yang, X.H., 2018. Population genetics of the endangered and wild edible plant Ottelia acuminata in southwestern China using novel SSR markers. Biochem. Genet. 56, 235-254
Outlines

/