Articles

Habitat suitability and herbivores determine reintroduction success of an endangered legume

  • Li Rong ,
  • Sun Hang ,
  • Matthew A. Albrecht ,
  • Quinn G. Long
Expand
  • Center for Conservation and Sustainable Development, Missouri Botanical Garden, PO Box 299, St. Louis, MO 63166, USA

Received date: 2018-02-11

  Revised date: 2018-08-04

  Online published: 2019-05-18

Supported by

This research was supported by the United States Department of Interior National Park Service Challenge Cost-Share Program (Grant:H55901000010) and the Tennessee Department of Environment and Conservation-Division of Natural Areas (Grants:32701-00385, 32701-0899, and 32701-01236).

Abstract

Reintroductions of rare plants require detailed knowledge of habitat requirements, species interactions, and restoration techniques. Thus, incremental experimentation over many years may be required to develop adequate knowledge and techniques for successful reintroduction. To determine drivers of extinction in historical reintroductions of a federally endangered perennial (Astragalus bibullatus), we developed a reintroduction experiment to disentangle the relative importance of habitat quality, herbivores, and restoration technique on reintroduction success. In a factorial design, we manipulated access to vertebrate herbivores across different habitat types (mesic ecotone vs. xeric barren), and used founder populations comprised of more transplants and genetic sources than previous reintroduction attempts. In mesic ecotones where historical reintroductions failed, excluding herbivores, thinning woody encroachment to improve habitat quality, outplanting across a greater array of microhabitats, and increasing founder population size did not improve demographic rates over previous attempts. Compared to mesic ecotones, transplant survival rates and cumulative fruit production were more than two and ten times greater, respectively, in a xeric barren ecotone characterized by open, grassy, and dry microenvironmental conditions. Across all sites, herbivores decreased probabilities of survival and flowering of larger adult plants. Flowering rates were 80% greater inside relative to outside herbivore exclusion cages. Over a four-year period, only a single uncaged plant produced fruit. Our study demonstrates that habitat quality and vertebrate herbivory are key drivers of long-term persistence in rare plant reintroductions. Using incremental experiments that build on previous knowledge gained from long-term monitoring can improve reintroduction outcomes.

Cite this article

Li Rong , Sun Hang , Matthew A. Albrecht , Quinn G. Long . Habitat suitability and herbivores determine reintroduction success of an endangered legume[J]. Plant Diversity, 2019 , 41(02) : 109 -117 . DOI: 10.1016/j.pld.2018.09.004

References

Adams, D.A., Walck, J.L., Howard, R.S., Milberg, P., 2012. Forest composition and structure on glade-forming limestones in middle Tennessee. Castanea 77,335-347.
Albrecht, M.A., Becknell, R.E., Long, Q., 2016. Habitat change in insular grasslands:woody encroachment alters the population dynamics of a rare ecotonal plant. Biol. Conserv. 196, 93-102.
Albrecht, M.A., Maschinski, J., 2012. Influence of founder population size, propagule stages, and life history on the survival of reintroduced plant populations. In:Maschinski, J., Haskins, K.E. (Eds.), Plant Reintroduction in a Changing Climate:Promises and Perils. Island Press, Washington, DC, pp. 171-188.
Albrecht, M.A., McCue, K.A., 2010. Changes in demographic processes over long time scales reveal the challenge of restoring an endangered plant. Restor. Ecol. 18, 235-243.
Albrecht, M.A., Penagos, J.C., 2012. Seed germination ecology of three imperiled plants of rock outcrops in the southeastern United States. J. Torrey Bot. Soc. 139, 86-95.
Armstrong, D.P., Castro, I., Griffiths, R., 2007. Using adaptive management to determine requirements of re-introduced populations:the case of the New Zealand hihi. J. Appl. Ecol. 44, 953-962.
Armstrong, D.P., Seddon, P.J., 2008. Directions in reintroduction biology. Trends Ecol. Evol. 23, 20-25.
Baskauf, C.J., Burke, J.M., 2009. Population genetics of Astragalus bibullatus (Faba-ceae) using AFLPs. J. Hered. 100, 424-431.
Baskin, J.M., Baskin, C.C., 1999. Cedar glades of the southeastern United States. In:Fralish, J.S., Baskin, J.M., Anderson, R.C. (Eds.), Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press, Cambridge, pp. 206-219.
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 48.
Bell, T.J., Bowles, M., McEachern, A.K., 2003. Projecting the success ofplant population restoration with viability analysis. In:Brigham, C.A., Schwartz, M.W. (Eds.), Population Viability in Plants. Springer-Verlag, Berlin, Germany, pp. 313-348.
Bernardo, H.L., Albrecht, M.A., Knight, T.M., 2016. Increased drought frequency alters the optimal management strategy of an endangered plant. Biol. Conserv. 203, 243-251.
Bontrager, M., Webster, K., Elvin, M., Parker, I., 2014. The effects of habitat and competitive/facilitative interactions on reintroduction success of the endangered wetland herb, Arenaria paludicola. Plant Ecol. 215, 467-478.
Borcard, D., Gillet, F., Legendre, P., 2011. Numerical Ecology with R. Springer, New York.
Bottin, L., Le Cadre, S., Quilichini, A., Bardin, P., Moret, J., Machon, N., 2007. Reestablishment trials in endangered plants:a review and the example of Arenaria grandiflora, a species on the brink of extinction in the Parisian region (France). Ecoscience 14, 410-419.
Bowen, B., 2011. Natural areas protection at its best:protecting the Tennessee Purple Cone flower (Echinacea tennesseensis). Nat. Areas J. 31, 326-330.
Bowles, M.L., McBride, J.L., Bell, T.J., 2015. Long-term processes affecting restoration and viability of the federal threatened Mead's milkweed (Asclepias meadii). Ecosphere 6 art11.
Colas, B., Kirchner, F., Riba, M., Olivieri, I., Mignot, A., Imbert, E., Beltrame, C., Carbonell, D., Freville, H., 2008. Restoration demography:a 10-year demographic comparison between introduced and natural populations of endemic Centaurea corymbosa (Asteraceae). J. Appl. Ecol. 45,1468-1476.
Crawley, M.J., 2007. The R Book. John Wiley & Sons, London.
Drayton, B., Primack, R.B., 2012. Success rates for reintroductions of eight perennial plant species after 15 years. Restor. Ecol. 20, 299-303.
Dunwiddie, P.W., Martin, R.A., 2016. Microsites matter:improving the success of rare species reintroductions. PLoS One 11, e0150417.
Falk, D.A., Millar, C.I., Olwell, M., 1996. Restoring Diversity:Strategies for Reintroduction of Endangered Plants. Island Press, Washington, DC.
Fenu, G., Cogoni, D., Bacchetta, G., 2016. The role of fencing in the success of threatened plant species translocation. Plant Ecol. 217, 207-217.
Godefroid, S., Piazza, C., Rossi, G., Buord, S., Stevens, A.-D., Aguraiuja, R., Cowell, C., Weekley, C.W., Vogg, G., Iriondo, J.M., Johnson, I., Dixon, B., Gordon, D., Magnanon, S., Valentin, B., Bjureke, K., Koopman, R., Vicens, M., Virevaire, M., Vanderborght, T., 2011. How successful are plant species reintroductions? Biol. Conserv. 144, 672-682.
Guerrant Jr., E.O., 1996. Designing populations:demographic, genetic, and horticultural dimensions. In:Falk, D.A., Millar, C.I., Olwell, M. (Eds.), Restoring Diversity:Strategies for Reintroduction of Endangered Plants. Island Press, Washington, DC, pp. 171-208.
GuerrantJr., E.O., 2012. Characterizing two decades of rare plant reintroductions. In:Maschinski, J., Haskins, K.E. (Eds.), Plant Reintroduction in a Changing Climate:Promises and Perils. Island Press, Washington, DC.
Guerrant Jr., E.O., Kaye, T.N., 2007. Reintroduction of rare and endangered plants:common factors, questions, and approaches. Aust. J. Bot. 55, 362-370.
Helenurm, K., 1998. Outplanting and differential source population success in Lupinus guadalupensis. Conserv. Biol. 12, 118-127.
Holl, K.D., Hayes, G.F., 2006. Challenges to introducing and managing disturbance regimes for Holocarpha macradenia, an endangered annual grassland forb. Conserv. Biol. 20, 1121-1131.
Hulme, P.E., 1996. Herbivores and the performance of grassland plants:a comparison of arthropod, mollusc and rodent herbivory. J. Ecol. 84, 43-51.
Knight, T.M., 2012. Using population viability analysis to plan reintroductions. In:Maschinski, J., Haskins, K.E. (Eds.), Plant Reintroduction in Changing Climate. Island Press, Washington, DC, pp. 155-169.
Knight, T.M., Caswell, H., Kalisz, S., 2009. Population growth rate of a common understory herb decreases non-linearly across a gradient of deer herbivory. For. Ecol. Manag. 257, 1095-1103.
Lawrence, B.A., Kaye, T.N., 2011. Reintroduction of Castilleja levisecta:effects of ecological similarity, source population genetics, and habitat quality. Restor. Ecol. 19, 166-176.
Lemmon, P.E., 1956. A spherical densiometer for estimating forest overstory density. For. Sci. 2, 314-320.
Maron, J.L., Crone, E., 2006. Herbivory:effects on plant abundance, distribution and population growth. Proc. Roy. Soc. Biol. Sci. 273, 2575-2584.
Maschinski, J., Albrecht, M.A., Monks, L.T., Haskins, K.E., 2012a. Center for plant conservation best reintroduction practice guidelines. In:Maschinski, J., Haskins, K.E. (Eds.), Plant Reintroduction in a Changing Climate. Island Press, Washington, DC, pp. 277-306.
Maschinski, J., Falk, D.A., Wright, S.J., Possley, J., Roncal, J., Wendelberger, K.S., 2012b. Optimal locations for plant reintroductions in a changing world. In:Maschinski, J., Haskins, K.E. (Eds.), Plant Reintroduction in a Changing Climate. Island Press, Washington, DC, pp. 109-129.
Maschinski, J., Haskins, K.E., 2012. Plant Reintroduction in a Changing Climate:Promises and Perils. Island Press, Washington, DC.
Maschinski, J., Wright, S.J., 2006. Using ecological theory to plan restorations of the endangered Beach jacquemontia (Convolvulaceae) in fragmented habitats. J. Nat. Conserv. 14, 180-189.
Maschinski, J., Wright, S.J., Koptur, S., Pinto-Torres, E.C., 2013. When is local the best paradigm? Breeding history influences conservation reintroduction survival and population trajectories in times of extreme climate events. Biol. Conserv. 159, 277-284.
McCue, K.A., Belt, E., Yurlina, M., 2001. Propagation protocol for Astragalus bib-ullatus. Nat. Plants J. 2, 131-132.
Menges, E.S., 2008. Restoration demography and genetics of plants:when is a translocation successful? Aust. J. Bot. 56, 187-196.
Menges, E.S., Smith, S.A., Weekley, C.W., 2016. Adaptive introductions:how multiple experiments and comparisons to wild populations provide insights into requirements for long-term introduction success of an endangered shrub. Plant Diversity 38, 238-246.
Morris, A.B., Baucom, R.S., Cruzan, M.B., 2002. Stratified analysis of the soil seed bank in the cedar glade endemic Astragalus bibullatus:evidence for historical changes in genetic structure. Am. J. Bot. 89, 29-36.
Noel, F., Prati, D., van Kleunen, M., Gygax, A., Moser, D., Fischer, M., 2011. Establishment success of25 rare wetland species introduced into restored habitats is best predicted by ecological distance to source habitats. Biol. Conserv. 144, 602-609.
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2017. Vegan:Community Ecology Package, R Package Version 2.4-4.
Pavlik, B.M., 1996. Defining and measuring success. In:Falk, D.A., Millar, C.I., Olwell, M. (Eds.), Restoring Diversity:Strategies for the Reintroduction of Endangered Species. Island Press, Washington, DC, pp. 127-156.
Pavlovic, N.B., 1994. Disturbance-dependent persistence of rare plants:anthropogenic impacts and restoration implications. In:Bowles, M.L., Whelan, C.J. (Eds.), Restoration of Endangered Species:Conceptual Issues, Planning and Implementation. Cambridge University Press, New York, pp. 159-193.
Peterson, C.L., Kaufmann, G.S., Vandello, C., Richardson, M.L., 2013. Parent genotype and environmental factors influence introduction success of the critically endangered Savannas Mint (Dicerandra immaculata var. savannarum). PLoS One 8, e61429.
Quarterman, E., 1950. Major plant communities of Tennessee cedar glades. Ecology 31, 234-254.
R Development Core Team, 2017. R:a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, pp. 20172009-2028.
Reckinger, C., Colling, G., Matthies, D., 2010. Restoring populations of the endangered plant Scorzonera humilis:influence of site conditions, seed source, and plant stage. Restor. Ecol. 18, 904-913.
Ren, H., Ma, G., Zhang, Q., Guo, Q., Wang, J., Wang, Z., 2010. Moss is a key nurse plant for reintroduction of the endangered herb, Primulina tabacum Hance. Plant Ecol. 209, 313-320.
Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103-113.
Smith, Z.F., James, E.A., McDonnell, M.J., McLean, C.B., 2009. Planting conditions improve translocation success of the endangered terrestrial orchid Diuris fra-grantissima (Orchidaceae). Aust. J. Bot. 57, 200-209.
Sutter, R.D., Govus, T.E., Smyth, R.L., Nordman, C., Pyne, M., Hogan, T., 2011. Monitoring change in a Central U.S. calcareous glade:resampling transects established in 1993. Nat. Area J. 31, 163-172.
USFWS, 2011. Recovery Plan for Astragalus bibullatus (Pyne's Ground-plum). USFWS, Atlanta, Georgia, p. 43.
Volis, S., Dorman, M., Blecher, M., Sapir, Y., Burdeniy, L., 2011. Variation partitioning in canonical ordination reveals no effect of soil but an effect of co-occurring species on translocation success in Iris atrofusca. J. Appl. Ecol. 48, 265-273.
Young, T.P., Petersen, D.A., Clary, J.J., 2005. The ecology of restoration:historical links, emerging issues, and unexplored realms. Ecol. Lett. 8, 662-673.
Zorn Arnold, B., Brown, J.S., Howe, H.F., 2006. Obvious and cryptic vole suppression of a prairie legume in experimental restorations. Int. J. Plant Sci. 167, 961-968.
Outlines

/