Articles

Geographic patterns and climatic drivers of the mean genus age of liverworts in North America

  • Hong Qian ,
  • Jian Wang ,
  • Shenhua Qian ,
  • Michael Kessler
Expand
  • a. Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA;
    b. Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China;
    c. Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, China;
    d. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China;
    e. College of Environment and Ecology, Chongqing University, Chongqing 400045, China;
    f. Department of Systematic and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland

Received date: 2024-02-01

  Revised date: 2024-07-04

  Online published: 2024-12-26

Abstract

Phylogenetic niche conservatism posits that species tend to retain ancestral ecological traits and distributions, which has been broadly tested for lineages originating in tropical climates but has been rarely tested for lineages that originated and diversified in temperate climates. Liverworts are thought to originate in temperate climates. Mean lineage age reflects evolutionary history of biological communities. Here, using regional liverwort floras across a long latitudinal gradient from tropical to arctic climates in North America, we test the age-component of the temperate niche conservatism hypothesis. Mean genus age (MGA) was estimated for each of 76 regional floras of liverworts. We related MGA to climatic variables for North America as a whole and for its eastern and western parts separately, and used variation partitioning analysis to assess the relative importance of temperature- versus precipitation-related variables and of climate extremes versus seasonality on MGA. We found that older genera of liverworts tend to concentrate in humid regions of intermediate temperatures in the range of 10 ℃-20 ℃, from which liverworts have adapted to and diversified into more arid, colder, and hotter regions, supporting the temperate niche conservatism hypothesis. We also found that across North America the MGA of liverwort assemblages is more strongly affected by precipitation-related variables than by temperature-related variables, and is more strongly affected by climate extremes than by climate seasonality. Geographic patterns of the MGA of liverworts are consistent with the temperate niche conservatism hypothesis, rather than the tropical niche conservatism hypothesis, the latter of which is broadly supported by angiosperms.

Cite this article

Hong Qian , Jian Wang , Shenhua Qian , Michael Kessler . Geographic patterns and climatic drivers of the mean genus age of liverworts in North America[J]. Plant Diversity, 2024 , 46(06) : 723 -731 . DOI: 10.1016/j.pld.2024.07.002

References

Aranda, S.C., Gabriel, R., Borges, P.A.V., et al., 2014. Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian Islands. PLoS One 9, e101786.
Brinda, J.C., Atwood, J.J., 2023. Bryophyte nomenclator. In: O. Banki, Y. Roskov, M. Doring, et al., Catalogue of Life Checklist (Jan 2023). https://doi.org/10.48580/dfqt-8zmp.
Brummitt, R.K., 2001. World Geographical Scheme for Recording Plant Distributions, 2 Edn. Hunt Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh.
Collart, F., Wang, J., Patino, J., et al., 2021. Macroclimatic structuring of spatial phylogenetic turnover in liverworts. Ecography 43, 1474-1485.
Delgadillo-Moya, C., 2022. Fifty years of bryology in Mexico. Bot. Sci. 100, 263-273.
Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11549-11555.
Gignac, L.D., 2001. Bryophytes as indicators of climate change. Bryologist 104, 410-420.
Hawkins, B.A., Rodriguez, M.A., Weller, S.G., 2011. Global angiosperm family richness revisited: linking ecology and evolution to climate. J. Biogeogr. 38, 1253-1266.
Hawkins, B.A., Rueda, M., Rangel, T.F., et al., 2014. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. J. Biogeogr. 41, 23-38.
Karger, D.N., Conrad, O., Bohner, J., et al., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data, 4, 170122.
Khine, P.K., Kluge, J., Kessler, M., et al., 2019. Latitude-independent, continent-wide consistency in climate-richness relationships in Asian ferns and lycophytes. J. Biogeogr. 46, 981-991.
Laenen, B., Shaw, B., Schneider, H., et al., 2014. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nat. Commun. 5, 5134.
Laenen, B., Patino, J., Hagborg, A., et al., 2018. Evolutionary origin of the latitudinal diversity gradient in liverworts. Mol. Phylogenet. Evol. 127, 606-612.
Legendre, P., Legendre, L., 2012. Numerical Ecology, third ed. Elsevier, Amsterdam.
Ligrone, R., Duckett, J.G., Renzaglia, K.S., 2012. Major transitions in the evolution of early land plants: a bryological perspective. Ann. Bot. 109, 851-871.
Li, L., Xu, X., Qian, H., et al., 2022. Elevational patterns of phylogenetic structure of angiosperms in a biodiversity hotspot in eastern Himalaya. Divers. Distrib. 28, 2534-2548.
Lu, L.-M., Mao, L.-F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238.
Morris, J.L., Puttick, M.N., Clark, J.W., et al., 2018. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. U.S.A. 115, E2274-E2283.
National Research Council, 2011. Understanding Earth's Deep Past: Lessons for Our Climate Future the National Academies Press, Washington, DC.
Patino, J., Vanderpoorten, A., 2018. Bryophyte biogeography. Crit. Rev. Plant Sci. 37, 175-209.
Proctor, M.C., Oliver, M.J., Wood, A.J., et al., 2007. Desiccation-tolerance in bryophytes: a review. Bryologist 110, 595-621.
Qian, H., Zhang, Y., Zhang, J., et al., 2013. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Global Ecol. Biogeogr. 22, 1183-1191.
Qian, H., Chen, S.-B., 2016. Reinvestigation on species richness and environmental correlates of bryophytes at a regional scale in China. J. Plant Ecol. 9, 734-741.
Qian, H., Ricklefs, R.E., 2016. Out of the tropical lowlands: latitude versus elevation. Trends Ecol. Evol., 31, 738-741.
Qian, H., Sandel, B., 2017. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecol. Biogeogr. 26, 1258-1269.
Qian, H., Zhang, J., Hawkins, B.A., 2018. Mean family age of angiosperm tree communities and its climatic correlates along elevational and latitudinal gradients in eastern North America. J. Biogeogr. 45, 259-268.
Qian, H., Deng, T., Jin, Y., et al., 2019a. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201.
Qian, H., Sandel, B., Deng, T., et al., 2019b. Geophysical, evolutionary and ecological processes interact to drive phylogenetic dispersion in angiosperm assemblages along the longest elevational gradient in the world. Bot. J. Linn. Soc., 190, 333-344.
Qian, H., Zhang, Y., Ricklefs, R.E., et al., 2022. Relationship of minimum winter temperature and temperature seasonality to the northern range limit and species richness of trees in North America. J. Geogr. Sci. 32, 280-290.
Qian, H., Sandel, B., 2022. Darwin's preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Global Ecol. Biogeogr. 31, 531-545.
Qian, H., Deng, T., 2023. Geographic patterns and climatic correlates of deep evolutionary legacies for angiosperm assemblages in China. J. Systemat. Evol. 61, 563-571.
Qian, H., Dai, Z., Wang, J., 2023a. Geographic patterns and ecological correlates of the mean genus age of liverworts in regional floras across China. J. Biogeogr. 50, 1817-1825.
Qian, H., Kessler, M., Zhang, J., et al., 2023b. Global patterns and climatic determinants of phylogenetic structure of regional fern floras. New Phytol. 239, 415-428.
Rangel, T.F.L.V.B., Diniz-Filho, J.A.F., Bini, L.M., 2010. SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33, 46-50.
Ricklefs, R.E., 1987. Community diversity: relative roles of local and regional processes. Science 235, 167-171.
Ricklefs, R.E., Schluter, D., 1993. Species diversity: regional and historical influences. In Species Diversity in Ecological Communities (eds R.E. Ricklefs & D. Schluter), University of Chicago Press, Chicago, pp. 350-363.
Ricklefs, R.E., 2008. The Economy of Nature. W. H. Freeman.
Ricklefs, R.E., 2010. The Economy of Nature: a Textbook in Basic Ecology, sixth ed. W. H. Freeman, New York.
Rosenzweig, M.L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.
Sandel, B., Weigelt, P., Kreft, H., et al., 2020. Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Global Ecol. Biogeogr. 29, 4-15.
Sharp, A.J., 1972. Phytogeographical correlations between the bryophytes of eastern Asia and North America. J. Hattori Bot. Lab. 35, 263-267.
Shaw, A.J., Cox, C.J., Goffinet, B., 2005. Global patterns of moss diversity: taxonomic and molecular inferences. Taxon 54, 337-352.
Stevens, R.D., 2006. Historical processes enhance patterns of diversity along latitudinal gradients. Proc. Royal Soc. B-Biol. Sci. 273, 2283-2289.
Stotler, R.E., Crandall-Stotler, B., 2017. A synopsis of the liverwort flora of North America north of Mexico. Ann. Mo. Bot. Gard. 102, 574-709.
Summerhayes, C.P., 2020, Palaeoclimatology: from Snowball Earth to the Anthropocene John Wiley & Sons.
Takhtajan, A.L., 1969. Flowering Plants: Origin and Dispersal. Oliver & Boyd, Edinburgh.
Voosen, P. 2019. Project traces 500 million years of roller-coaster climate. Science 364, 716-717.
Wang, J., Vanderpoorten, A., Hagborg, A., et al., 2017. Evidence for a latitudinal diversity gradient in liverworts and hornworts. J. Biogeogr. 44, 487-488.
Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639-644.
Wilkinson, L., Hill, M., Welna, J.P., et al., 1992. SYSTAT for Windows: Statistics. SYSTAT Inc., Evanston.
Wu, E.T.Y., Liu, Y., Jennings, L., et al., 2022. Detecting the phylogenetic signal of glacial refugia in a bryodiversity hotspot outside the tropics. Divers. Distrib. 28, 2681-2695.
Zhang, J., Qian, H., Girardello, et al., 2018. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. Royal Soc. B-Biol. Sci. 285, 20180949.
Zhang, J., Qian, H., 2023. U.Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1-5.
Zhao, M., Wang, Y., Xue, F., et al., 2018. Elevational patterns and ecological determinants of mean family age of angiosperm assemblages in temperate forests within Mount Taibai, China. J. Plant Ecol. 11, 919-927.
Outlines

/