Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 344-352.DOI: 10.1016/j.pld.2023.06.001
• Articles • Previous Articles Next Articles
Xiang-Zhou Hua,b, Cen Guoa, Sheng-Yuan Qina,b, De-Zhu Lia,b, Zhen-Hua Guoa,b
Received:
2023-02-07
Revised:
2023-05-24
Online:
2024-05-20
Published:
2024-05-25
Contact:
Xiang-Zhou Hu,E-mail:huxiangzhou@mail.kib.ac.cn;Cen Guo,E-mail:guocen@mail.kib.ac.cn;Sheng-Yuan Qin,E-mail:qinshengyuan@mail.kib.ac.cn;De-Zhu Li,E-mail:DZL@mail.kib.ac.cn;Zhen-Hua Guo,E-mail:guozhenhua@mail.kib.ac.cn
Supported by:
Xiang-Zhou Hua,b, Cen Guoa, Sheng-Yuan Qina,b, De-Zhu Lia,b, Zhen-Hua Guoa,b
通讯作者:
Xiang-Zhou Hu,E-mail:huxiangzhou@mail.kib.ac.cn;Cen Guo,E-mail:guocen@mail.kib.ac.cn;Sheng-Yuan Qin,E-mail:qinshengyuan@mail.kib.ac.cn;De-Zhu Li,E-mail:DZL@mail.kib.ac.cn;Zhen-Hua Guo,E-mail:guozhenhua@mail.kib.ac.cn
基金资助:
Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae)[J]. Plant Diversity, 2024, 46(03): 344-352.
Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae)[J]. Plant Diversity, 2024, 46(03): 344-352.
[1] Abbott, R.J., 2003. Sex, sunflowers, and speciation. Science 301, 1189-1190. [2] Berger, B.A., Han, J., Sessa, E.B., et al., 2017. The unexpected depths of genome-skimming data:a case study examining Goodeniaceae floral symmetry genes. Appl. Plant Sci. 5, 1700042. [3] Birky, C.W., 1995. Uniparental inheritance of mitochondrial and chloroplast genes:mechanisms and evolution. Proc. Natl. Acad. Sci. U.S.A. 92, 11331-11338. [4] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [5] Cai, L.M., Xi, Z.X., Lemmon, E.M., et al., 2021. The perfect storm:gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Syst. Biol. 70, 491-507. [6] Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., 2009. TrimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973. [7] Debray, K., Le Paslier, M.C., Berard, A., et al., 2022. Unveiling the patterns of reticulated evolutionary processes with phylogenomics:hybridization and polyploidy in the genus Rosa. Syst. Biol. 71, 547-569. [8] Dong, W.P., Li, E.Z., Liu, Y.L., et al., 2022. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol. 20, 92. [9] Doolittle, W.F., 1999. Phylogenetic classification and the universal tree. Science 284, 2124-2128. [10] Gross, B.L., Rieseberg, L.H., 2005. The ecological genetics of homoploid hybrid speciation. J. Hered. 96, 241-252. [11] Guo, C., Guo, Z.H., Li, D.Z., 2019b. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae:Bambusoideae). Plant Divers. 41, 213-219. [12] Guo, C., Ma, P.F., Yang, G.Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. [13] Guo, C., Luo, Y., Gao, L.M., et al., 2023. Phylogenomics and the flowering plant tree of life. J. Integr. Plant Biol. 65, 299-323. [14] Guo, Z.H., Ma, P.F., Yang, G.Q., et al., 2019a. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 12, 1353-1365. [15] Hu, Y.N., Zhao, L., Buggs, R.J.A., et al., 2019. Population structure of Betula albosinensis and Betula platyphylla:evidence for hybridization and a cryptic lineage. Ann. Bot. 123, 1179-1189. [16] Janzen, D.H., 1976. Why bamboos wait so long to flower. Annu. Rev. Ecol. Systemat. 7, 347-391. [17] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [18] Johnson, M.G., Gardner, E.M., Liu, Y., et al., 2016. HybPiper:extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4, 1600016. [19] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [20] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [21] Linder, C.R., Rieseberg, L.H., 2004. Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91, 1700-1708. [22] Liu, B.B., Ma, Z.Y., Ren, C., et al., 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics:a case study in Vitaceae. J. Systemat. Evol. 5, 1124-1138. [23] Liu, J.X., Zhou, M.Y., Yang, G.Q., et al., 2020. ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae:Bambusoideae). Mol. Phylogenet. Evol. 146, 106758. [24] Liu, L.X., Deng, P., Chen, M.Z., et al., 2023. Systematics of Mukdenia and Oresitrophe(Saxifragaceae):insights from genome skimming data. J. Systemat. Evol. 61, 99-114. [25] Low, L.W., Rajaraman, S., Tomlin, C.M., et al., 2022. Genomic insights into rapid speciation within the world's largest tree genus Syzygium. Nat. Commun. 13, 5031. [26] Lv, S.Y., Ye, X.Y., Li, Z.H., et al., 2023. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia. Plant Divers. 45, 147-155. [27] Ma, J.X., Sun, P.C., Wang, D.D., et al., 2021. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat. Commun. 12, 6929. [28] Ma, P.F., Liu, Y.L., Guo, C., et al., 2023. Subgenome Dominance Included Diversification in the World's Largest Grasses.(submitted for publication). [29] Mallet, J., Besansky, N., Hahn, M.W., 2016. How reticulated are species?Bioessays 38, 140-149. [30] McKenna, A., Hanna, M., Banks, E., et al., 2010. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303. [31] Morales-Briones, D.F., Kadereit, G., Tefarikis, D.T., et al., 2021. Disentangling sources of gene tree discordance in phylogenomic data sets:testing ancient hybridization in Amaranthaceae s.l. Syst. Biol. 70, 219-235. [32] Nguyen, L.T., Schmidt, H.A., Haeseler, A.V., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [33] Nitta, J.H.; Ebihara, A., Ito, M., 2011. Reticulate evolution in the Crepidomanes minutum species complex (Hymenophyllaceae). Am. J. Bot. 98, 1782-1800. [34] Parisod, C., Badaeva, E.D., 2020. Chromosome restructuring among hybridizing wild wheats. New Phytol. 226, 1263-1273. [35] Pease, J.B., Brown, J.W., Walker, J.F., et al., 2018. Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. Am. J. Bot. 105, 385-403. [36] Pennisi, E., 2016. Shaking up the tree of life. Science 354, 817-821. [37] Pickrell, J.K., Pritchard, J.K., 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967. [38] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA:a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. [39] Ramsey, J., Schemske, D.W., 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Systemat. 33, 589-639. [40] Rieseberg, L.H., Soltis, D.E., 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plants 5, 65-84. [41] Smith, S.A., Moore, M.J., Brown, J.W., et al., 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150. [42] Solís-Lemus, C., Bastide, P., Ané, C., 2017. Phylonetworks:a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292-3298. [43] Soltis, P.S., Soltis, D.E., 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561-588. [44] Soreng, R.J., Peterson, P.M., Fernando, O.Z., et al., 2022. A worldwide phylogenetic classification of the Poaceae (Gramineae) III:an update. J. Systemat. Evol. 60, 476-521. [45] Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. [46] Stewart, N.C., Halfhill, M.D., Warwick, S.I., 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4, 806-817. [47] Stull, G.W., Pham, K.K., Soltis, P.S., et al., 2023. Deep reticulation:the long legacy of hybridization in vascular plant evolution. Plant J. doi:https://doi.org/10.1111/tpj.16142. [48] Triplett, J.K., 2008. Phyloenetic Relationships Among the Temperate Bamboos (Poaceae:Bambusoideae) with an Emphasis on Arundinaria and Allies. Lowa, United States:Lowa State University. [49] Triplett, J.K., Clark, L.G., 2010. Phylogeny of the temperate bamboos (Poaceae:Bambusoideae:Bambuseae) with an emphasis on Arundinaria and allies. Syst. Bot. 35, 102-120. [50] Triplett, J.K., Clark, L.G., 2021. Hybridization in the temperate bamboos (Poaceae:Bambusoideae:Arundinarieae):a phylogenetic study using AFLPs and cpDNA sequence data. Syst. Bot. 46, 48-69. [51] Triplett, J.K., Clark, L.G., Fisher, L.G., et al., 2014. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol. 204, 66-73. [52] Vargas, O.M., Heuertz, M., Smith, S.A., et al., 2019. Target sequence capture in the Brazil nut family (Lecythidaceae):marker selection and in silico capture from genome skimming data. Mol. Phylogenet. Evol. 135, 98-104. [53] Walker, J.F., Walker-Hale, N., Vargas, O.M., et al., 2019. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 7, e7747. [54] Wang, H.X., Morales-Briones, D.F., Moore, M.J., et al., 2021a. A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. J. Systemat. Evol. 59, 897-914. [55] Wang, X.T., Chen, L.Y., Ma, J.X., 2019. Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biol. 20, 22-36. [56] Wang, Z.F., Jiang, Y.Z., Bi, H., et al., 2021b. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol. Plant 14, 208-222. [57] Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. [58] Yang, F.M., Ge, J., Guo, Y.J., et al., 2023. Deciphering complex reticulate evolution of Asian Buddleja(Scrophulariaceae):insights into the taxonomy and speciation of polyploid taxa in the Sino-Himalayan region. Ann. Bot. doi:https://doi.org/10.1093/aob/mcad022. [59] Yang, H.M., Zhang, Y.X., Yang, J.B., et al., 2013. The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae:Bambusoideae) inferred from four plastid and two nuclear markers. Mol. Phylogenet. Evol. 68, 340-356. [60] Ye, X.Y., Ma, P.F., Guo, C., et al., 2021. Phylogenomics of Fargesia and Yushania reveals a history of reticulate evolution. J. Systemat. Evol. 59, 1183-1197. [61] Yu, J.R., Niu, Y.T., You, Y.C., et al., 2023. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus(Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. New Phytol. 238, 888-903. [62] Zhang, C., Rabiee, M., Sayyari, E., et al., 2018. ASTRAL-III:polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19, 153. [63] Zhang, N., Wen, J., Zimmer, E.A., 2015. Congruent deep relationships in the grape family (Vitaceae) based on sequences of chloroplast genomes and mitochondrial genes via genome skimming. PLoS One 10, e0144701. [64] Zhang, X.T., Chen, S., Shi, L.Q., et al., 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 53, 1250-1259. [65] Zhang, Y.X., Zeng, C.X., Li, D.Z., 2012. Complex evolution in Arundinarieae (Poaceae:Bambusoideae):incongruence between plastid and nuclear GBSSI gene phylogenies. Mol. Phylogenet. Evol. 63, 777-797. [66] Zhao, X.B., Fu, X.D., Yin, C.B., et al., 2021. Wheat speciation and adaptation:perspectives from reticulate evolution. aBIOTECH 2, 386-402. [67] Zou, T.T., Kuang, W.M., Yin, T.T., et al., 2022. Uncovering the enigmatic evolution of bears in greater depth:the hybrid origin of the Asiatic black bear. Proc. Natl. Acad. Sci. U.S.A. 119, e2120307119. |
[1] | Na-Na Zhang (张娜娜), Gregory W. Stull, Xue-Jie Zhang (张学杰), Shou-Jin Fan (樊守金), Ting-Shuang Yi (伊廷双), Xiao-Jian Qu (曲小健). PlastidHub: An integrated analysis platform for plastid phylogenomics and comparative genomics [J]. Plant Diversity, 2025, 47(04): 544-560. |
[2] | Zhi-Qiong Mo (莫智琼), Chao-Nan Fu (付超男), Alex D. Twyford, Pete M. Hollingsworth, Ting Zhang (张挺), Jun-Bo Yang (杨俊波), De-Zhu Li (李德铢), Lian-Ming Gao (高连明). Evaluating the utility of deep genome skimming for phylogenomic analyses: A case study in the species-rich genus Rhododendron [J]. Plant Diversity, 2025, 47(04): 593-603. |
[3] | Shuo Feng (封烁), Haixia Ma (马海霞), Yu Yin (殷钰), Wei Wan (万薇), Kangshan Mao (毛康珊), Dafu Ru (汝大福). A complex interplay of genetic introgression and local adaptation during the evolutionary history of three closely related spruce species [J]. Plant Diversity, 2025, 47(04): 620-632. |
[4] | Lang Li (李朗), Bing Liu (刘冰), Yu Song (宋钰), Hong-Hu Meng (孟宏虎), Xiu-Qin Ci (慈秀芹), John G. Conran, Rogier P.J. de Kok, Pedro Luís Rodrigues de Moraes, Jun-Wei Ye (叶俊伟), Yun-Hong Tan (谭运洪), Zhi-Fang Liu (刘志芳), Marlien van der Merwe, Henk van der Werff, Yong Yang (杨永), Jens G. Rohwer, Jie Li (李捷). Global advances in phylogeny, taxonomy and biogeography of Lauraceae [J]. Plant Diversity, 2025, 47(03): 341-364. |
[5] | Fangdong Geng (耿方东), Miaoqing Liu (刘苗青), Luzhen Wang (王璐珍), Xuedong Zhang (张雪栋), Jiayu Ma (马佳雨), Hang Ye (叶航), Keith Woeste, Peng Zhao (赵鹏). Genomic introgression underlies environmental adaptation in three species of Chinese wingnuts, Pterocarya [J]. Plant Diversity, 2025, 47(03): 365-381. |
[6] | Kai Chen, Yan-Chun Liu, Yue Huang, Xu-Kun Wu, Hai-Ying Ma, Hua Peng, De-Zhu Li, Peng-Fei Ma. Reassessing the phylogenetic relationships of Pseudosorghum and Saccharinae (Poaceae) using plastome and nuclear ribosomal sequences [J]. Plant Diversity, 2025, 47(03): 382-393. |
[7] | Kai-Yun Chen, Jin-Dan Wang, Rui-Qi Xiang, Xue-Dan Yang, Quan-Zheng Yun, Yuan Huang, Hang Sun, Jia-Hui Chen. Backbone phylogeny of Salix based on genome skimming data [J]. Plant Diversity, 2025, 47(02): 178-188. |
[8] | Amos Kipkoech, Ke Li, Richard I. Milne, Oyetola Olusegun Oyebanji, Moses C. Wambulwa, Xiao-Gang Fu, Dennis A. Wakhungu, Zeng-Yuan Wu, Jie Liu. An integrative approach clarifies species delimitation and biogeographic history of Debregeasia (Urticaceae) [J]. Plant Diversity, 2025, 47(02): 229-243. |
[9] | Yongli Wang, Yan-Da Li, Shuo Wang, Erik Tihelka, Michael S. Engel, Chenyang Cai. Modeling compositional heterogeneity resolves deep phylogeny of flowering plants [J]. Plant Diversity, 2025, 47(01): 13-20. |
[10] | Liansheng Xu, Zhuqiu Song, Tian Li, Zichao Jin, Buyun Zhang, Siyi Du, Shuyuan Liao, Xingjie Zhong, Yousheng Chen. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq) [J]. Plant Diversity, 2025, 47(01): 21-33. |
[11] | Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu. A revised classification of Dryopteridaceae based on plastome phylogenomics and morphological evidence, with the description of a new genus, Pseudarachniodes [J]. Plant Diversity, 2025, 47(01): 34-52. |
[12] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species [J]. Plant Diversity, 2025, 47(01): 53-67. |
[13] | Wei Gu, Ting Zhang, Shui-Yin Liu, Qin Tian, Chen-Xuan Yang, Qing Lu, Xiao-Gang Fu, Heather R. Kates, Gregory W. Stull, Pamela S. Soltis, Douglas E. Soltis, Ryan A. Folk, Robert P. Guralnick, De-Zhu Li, Ting-Shuang Yi. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae [J]. Plant Diversity, 2024, 46(06): 683-697. |
[14] | Hui Feng, Achyut Kumar Banerjee, Wuxia Guo, Yang Yuan, Fuyuan Duan, Wei Lun Ng, Xuming Zhao, Yuting Liu, Chunmei Li, Ying Liu, Linfeng Li, Yelin Huang. Origin and evolution of a new tetraploid mangrove species in an intertidal zone [J]. Plant Diversity, 2024, 46(04): 476-490. |
[15] | Yumeng Ren, Lushui Zhang, Xuchen Yang, Hao Lin, Yupeng Sang, Landi Feng, Jianquan Liu, Minghui Kang. Cryptic divergences and repeated hybridizations within the endangered “living fossil” dove tree (Davidia involucrata) revealed by whole genome resequencing [J]. Plant Diversity, 2024, 46(02): 169-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||