Plant Diversity ›› 2024, Vol. 46 ›› Issue (03): 309-320.DOI: 10.1016/j.pld.2024.03.010
• Articles • Previous Articles Next Articles
Zi-Yan Zhanga,b, He-Xiao Xiac, Meng-Jie Yuana,b, Feng Gaoa,b, Wen-Hua Baoa,b, Lan Jina,b, Min Lia,b, Yong Lia,b,d
Received:
2024-01-05
Revised:
2024-03-22
Online:
2024-05-20
Published:
2024-05-25
Contact:
Yong Li,E-mail:20220053@imnu.edu.cn
Supported by:
Zi-Yan Zhanga,b, He-Xiao Xiac, Meng-Jie Yuana,b, Feng Gaoa,b, Wen-Hua Baoa,b, Lan Jina,b, Min Lia,b, Yong Lia,b,d
通讯作者:
Yong Li,E-mail:20220053@imnu.edu.cn
基金资助:
Zi-Yan Zhang, He-Xiao Xia, Meng-Jie Yuan, Feng Gao, Wen-Hua Bao, Lan Jin, Min Li, Yong Li. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut[J]. Plant Diversity, 2024, 46(03): 309-320.
Zi-Yan Zhang, He-Xiao Xia, Meng-Jie Yuan, Feng Gao, Wen-Hua Bao, Lan Jin, Min Li, Yong Li. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut[J]. Plant Diversity, 2024, 46(03): 309-320.
[1] Adal, A.M., Sarker, L.S., Lemke, A.D., et al., 2017. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. Plant Mol. Biol. 93, 641-657. [2] Ashburner, M., Ball, C.A., Blake, J.A., et al., 2000. Gene ontology:tool for the unification of biology. Nat. Genet. 25, 25-29. [3] Bao, Z., Eddy, S.R., 2002. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res. 12, 1269-1276. [4] Berckmans, B., Vassileva, V., Schmid, S.P., et al., 2011. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23, 3671-3683. [5] Birney, E., Clamp, M., Durbin, R., 2004. GeneWise and genomewise. Genome Res. 14, 988-995. [6] Bo, X., Yu, K., 2021. Study on extraction and chemical constituents of volatile oil from the leaves of Pterocarya stenoptera C. DC. Hubei Agr. Sci. 60, 119-123. [7] Boeckmann, B., Bairoch, A., Apweiler, R., et al., 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365-370. [8] Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59-60. [9] Burton, J.N., Adey, A., Patwardhan, R.P., et al., 2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119-1125. [10] Chen, N.G., Wang, P.R., Li, C.M., et al., 2018. A Single nucleotide mutation of the gene participating in the MEP pathway forisoprenoid biosynthesis causes a green-revertible yellow leaf phenotype in rice. Plant Cell Physiol. 59, 1905-1917. [11] Cheng, H., Concepcion, G.T., Feng, X., et al., 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18,170-175. [12] Cheng, T., Zhang, K., Guo, J., et al., 2022. Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco. Biotechnol. Biof. Biop. 15, 39. [13] Chohan, T.A., Chohan, T.A., Mumtaz, M.Z., et al., 2023. Insecticidal potential of α-pinene and β-caryophyllene against Myzus persicae and their impacts on gene expression. Phyton-Int. J. Exp. Bot. 92, 1943-1954. [14] Dang, J.J., Lin, G.Y., Liu, L.C., et al., 2022. Comparison of pulegone and estragole chemotypes provides new insight into volatile oil biosynthesis of Agastache rugosa. Front. Plant Sci. 13, 850130. [15] Deng, Y.Y., Li, J.Q., Wu, S.F., et al., 2006. Integrated NR database in protein annotation system and its localization. Comp. Eng. 32, 71-74. [16] Ding, Y.M., Pang, X.X., Cao, Y., et al., 2023. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat. Commun. 14, 617. [17] Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. bull. 19, 11-15. [18] Ellinghaus, D., Kurtz, S., Willhoeft, U., 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18. [19] Emms, D.M., Kelly, S., 2019. OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. [20] Finn, R.D., Mistry, J., Schuster-Bockler, B., et al., 2006. Pfam:clans, web tools and services. Nucleic Acids Res. 34, D247-D251. [21] Flynn, J.M., Hubley, R., Goubert, C., et al., 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U.S.A. 117, 9451-9457. [22] Gao, F.Z., Liu, B.F., Li, M., et al., 2018. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. J. Exp. Bot. 69, 4249-4265. [23] Gao, N., 2009. Study on Pllutant in the Water Removal Efficiency of Several Trees Commonly Used in Urban. Beijing:Beijing Forestry University,(Master thesis). [24] Griffiths-Jones, S., Moxon, S., Marshall, M., et al., 2005. Rfam:annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121-D124. [25] Haas, B.J., Delcher, A.L., Mount, S.M., et al., 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654-5666. [26] Haas, B.J., Salzberg, S.L., Zhu, W., et al., 2008. Automated eukaryotic gene structure annotation using EVidence Modeler and the Program to Assemble spliced alignments. Genome Biol. 9, R7. [27] Han, M.V., Thomas, G.W.C., Lugo-Martinez, J., et al., 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987-1997. [28] Huerta-Cepas, J., Szklarczyk, D., Heller, D., et al., 2019. eggNOG 5.0:a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309-D314. [29] Jethva, J., Lichtenauer, S., Schmidt-Schippers, R., et al., 2023. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. New Phytol. 238, 96-112. [30] Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. [31] Kanehisa, M., Sato, Y., Kawashima, M., et al., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457-D462. [32] Katoh, K., Asimenos, G., Toh, H., 2009. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537, 39-64. [33] Keilwagen, J., Wenk, M., Erickson, J.L., et al., 2016. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89. [34] Kim, D., Landmead, B., Salzberg, S.L. 2015. HISAT:a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360. [35] Kind, T., Wohlgemuth, G., Lee, D.Y., et al., 2009. FiehnLib:mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038-10048. [36] Korf, I., 2004. Gene finding in novel genomes. BMC Bioinf. 5, 59. [37] Kuang, K.R., Li, P.Q., 1979. Flora of China (Volume 21). Beijing:Science Press, pp. 21-30. [38] Kumar, S., Stecher, G., Suleski, M., et al., 2017, Timetree:a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812-1819. [39] Kumbasli, M., Bauce, E., 2013. Spruce budworm biological and nutritional performance responses to varying levels of monoterpenes. iForest-Biogeosci. Fores. 6, 117. [40] Langfelder, P., Horvath, S., 2008. WGCNA:an R package for weighted correlation network analysis. BMC Bioinf. 9, 559. [41] Li, C.X., Wei, H., Lv, Q., Zhang, Y., 2010. Effects of water stresses on growth and contents of oxalate and tartarate in the roots of Chinese wingnut (Pterocarya stenoptera) seedlings. Sci. Silvae Sin. 46, 81-88. [42] Li, D.X., Cui, C.B., Cai, B., et al., 2007. Research progress of Pterocarya. Pharm. J. Chinese P. L. A. 23, 365-369. [43] Li, H., 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572-4574. [44] Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. [45] Li, H., Durbin, R., 2011. Inference of human population history from individual whole-genome sequences. Nature 475, 493-496. [46] Li, X.R., Zhang, X.X., Xing, M.Y., et al., 2021. Antioxidant and antibacterial activities of Pterocarya stenoptera bark extract and its mechanism on Staphylococcus aureus through cell membrane damage. Bioresources 16, 3771-3782. [47] Li, J.X., Zhu, X.H., Li, Y., et al., 2018. Adaptive genetic differentiation in Pterocarya stenoptera(Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biol. 18, 306. [48] Li, L.F., Cushman, S.A., He, Y.X., et al., 2022. Landscape genomics reveals genetic evidence of local adaptation in a widespread tree, the Chinese wingnut (Pterocarya stenoptera). J. Systemat. Evol. 60, 386-397. [49] Li, Y., Shi, L.C., Yang, J., et al., 2021. Physiological and transcriptional changes provide insights into the effect of root waterlogging on the aboveground part of Pterocarya stenoptera. Genomics 113, 2583-2590. [50] Li, Y., Si, Y.T., He, Y.X., et al., 2021. Comparative analysis of drought-responsive and-adaptive genes in Chinese wingnut (Pterocarya stenoptera C. DC). BMC Genom. 22, 155. [51] Li, Y., Wang, F., Pei, N.C., et al., 2023. The updated weeping forsythia genome reveals the genomic basis for the evolution and the forsythin and forsythoside A biosynthesis. Hortic.Plant J. 9, 1149-1161. [52] Liu, Y., Schroder, J., Schmidt, B., 2013. Musket:a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29, 308-315. [53] Liu, Z.K., Fu, Y.H., Wang, H., et al., 2023. The high-quality sequencing of the Brassica rapa'XiangQingCai'genome and exploration of genome evolution and genes related to volatile aroma. Hortic. Res. 10, uhad187. [54] Loman, T., 2017. A novel method for predicting ribosomal RNA genes in prokaryotic genomes. Degree Projects in Bioinformatics. http://lup.lub.lu.se/student-papers/record/8914064. [55] Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. [56] Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. [57] Mi, H., Muruganujan, A., Ebert, D., et al., 2019. PANTHER version 14:more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419-D426. [58] Nanjing University of Traditional Chinese Medicine, 1997. Dictionary of Traditional Chinese Medicine. Shanghai:Shanghai Science& Technology Press. [59] Nawrocki, E.P., Eddy, S.R., 2013. Infernal 1.1:100-fold faster RNA homology searches. Bioinformatics 29, 2933-2935. [60] Niu, F.X., He, X., Wu, Y.Q., et al., 2018. Enhancing Production of Pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Front. Microbiol. 9, 1623. [61] Ou, S., Jiang, N., 2018. LTR_retriever:a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410-1422. [62] Pan Y. 2021. Propagation and cultivation techniques for ginkgo and Pterocarya stenoptera trees in Changji prefecture. Forest. Xinjiang 1, 22-24. [63] Parra, G., Bradnam, K., Korf, I., 2007. CEGMA:a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067. [64] Pertea, M., Pertea, G.M., Antonescu, C.M., et al., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295. [65] Price, A.L., Jones, N.C., Pevzner, P.A., 2005. De novo identification of repeat families in large genomes. Bioinformatics 21, i351-i358. [66] Qian, Z.H., Li, Y., Li, M.W., et al., 2019. Molecular phylogeography analysis reveals population dynamics and genetic divergence of a widespread tree Pterocarya stenoptera in China. Front. Genet. 10, 1089. [67] Rai, N., Kumari, S., Singh, S., et al., 2024. Modulation of morpho-physiological attributes and in situ analysis of secondary metabolites using Raman spectroscopy in response to red and blue light exposure in Artemisia annua. Environ. Exp. Bot. 217, 105563. [68] Richter, A., Seidl-Adams, I., Kollner, T.G., et al., 2015. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta 241, 1351-1361. [69] Shannon, P., Markiel, A., Ozier, O., et al., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. [70] Shao, Y., 2016. Study on Juglandaceae Fossils from the Late Miocene of Lincang, Yunnan Province, China. Lanzhou:Lanzhou University,(Master's thesis). [71] She, R., Chu, J.S., Wang, K., et al., 2009. GenBlastA:enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143-149. [72] Simao, F.A., Waterhouse, R.M., Ioannidis, P., et al., 2015. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212. [73] Sollars, E.S., Harper, A.L., Kelly, L.J., et al., 2017. Genome sequence and genetic diversity of European ash trees. Nature 541, 212-216. [74] Stanke, M., Diekhans, M., Baertsch, R., et al., 2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637-644. [75] Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612. [76] Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [77] Tang, H., Krishnakumar, V., Li, J., et al., 2015. Jcvi:JCVI Utility Libraries. Zenodo. [78] Tang, S., Lomsadze, A., Borodovsky, M., 2015. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78. [79] Tarailo-Graovac, M., Chen, N., 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1-4:4.10.14. [80] Tatusov, R.L., Fedorova, N.D., Jackson, J.D., et al., 2003. The COG database:an updated version includes eukaryotes. BMC Bioinf. 4, 41. [81] Tommasini, D., Fogel, B.L. 2023. multiWGCNA:an R package for deep mining gene co-expression networks in multi-trait expression data. BMC Bioinf. 24, 115. [82] Tripathi, A.K., Prajapati, V., Khanuja, S.P.S., et al., 2003. Effect of d-limonene on three stored-product beetles. J. Econ. Entomol. 96, 990-995. [83] Wang, W., Shao, A., Xu, X., et al., 2022. Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC Plant Biol. 22, 355. [84] Wang, Y., Tang, H., Debarry, J.D., et al., 2012. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49. [85] Wickham, H. 2009. Ggplot2:Elegant Graphics for Data Analysis, second ed. New York:Springer. [86] Winter, G., Todd, C.D., Trovato, M., et al., 2015. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 6, 534. [87] Xie, S., Wu, G., Ren, R.H., et al., 2023. Transcriptomic and metabolic analyses reveal differences in monoterpene profiles and the underlying molecular mechanisms in six grape varieties with different flavors. LWT--Food Sci. Technol. 174, 114442. [88] Xie, S.P., Manchester, S.R., Liu, K.N., et al., 2013. Sp N., A leaf fossil of Rutaceae from the late Miocene of Yunnan, China. Int. J. Plant Sci. 174, 1201-1207. [89] Xu, Y.M., Zhou, M.H., Shi, Y.H., et al., 2002. Advance on the biological properties and resources utilization of Pterocarya stenoptera. J. Northeast For. Univ. 30, 42-48. [90] Xu, Z., Wang, H., 2007. LTR_FINDER:an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265-W268. [91] Yang, Z. 1997. PAML:a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555-556. [92] Ye, X.F., Li, Y., Liu, H.L., et al., 2020. Physiological analysis and transcriptome sequencing reveal the effects of drier air humidity stress on Pterocarya stenoptera. Genomics 112, 5005-5011. [93] Yin, C., Sun, F., Rao, Q., et al., 2020. Chemical compositions and antimicrobial activities of the essential oil from Pterocarya stenoptera C. DC. Nat. Prod. Res. 34, 2828-2831. [94] Yu, G.C., Wang, L.G., Han, Y.Y., et al., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. OMICS 16, 284-287. [95] Zhang, W., Wang, S.C. Li, Y., 2023. Molecular mechanism of thiamine in mitigating drought stress in Chinese wingnut (Pterocarya stenoptera):insights from transcriptomics. Ecotoxicol. Environ. Saf. 263, 115307. [96] Zhu, C.Y., Peng, C., Qiu, D.Y., et al., 2022. Metabolic profiling and transcriptional analysis of carotenoid accumulation in a red-fleshed mutant of pummelo (Citrus grandis). Molecules 27, 4595. [97] Zwaenepoel, A., Van de Peer, Y., 2019. WGD-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153-2155. |
[1] | Ibrokhimjon Ergashov, Ziyoviddin Yusupov, Alireza Dolatyari, Mina Khorasani, İsmail Eker, Nazgul Turdumatova, Georgy Lazkov, Farruhbek Rasulov, Hang Sun, Tao Deng, Komiljon Tojibaev. New insights into the molecular phylogeny and biogeographical history of Allium subgenus Melanocrommyum (Amaryllidaceae) based on plastome and nuclear sequences [J]. Plant Diversity, 2025, 47(04): 561-575. |
[2] | Zhi-Qiong Mo (莫智琼), Chao-Nan Fu (付超男), Alex D. Twyford, Pete M. Hollingsworth, Ting Zhang (张挺), Jun-Bo Yang (杨俊波), De-Zhu Li (李德铢), Lian-Ming Gao (高连明). Evaluating the utility of deep genome skimming for phylogenomic analyses: A case study in the species-rich genus Rhododendron [J]. Plant Diversity, 2025, 47(04): 593-603. |
[3] | Shuo Feng (封烁), Haixia Ma (马海霞), Yu Yin (殷钰), Wei Wan (万薇), Kangshan Mao (毛康珊), Dafu Ru (汝大福). A complex interplay of genetic introgression and local adaptation during the evolutionary history of three closely related spruce species [J]. Plant Diversity, 2025, 47(04): 620-632. |
[4] | Fangdong Geng (耿方东), Miaoqing Liu (刘苗青), Luzhen Wang (王璐珍), Xuedong Zhang (张雪栋), Jiayu Ma (马佳雨), Hang Ye (叶航), Keith Woeste, Peng Zhao (赵鹏). Genomic introgression underlies environmental adaptation in three species of Chinese wingnuts, Pterocarya [J]. Plant Diversity, 2025, 47(03): 365-381. |
[5] | Jing Chen, Jingjing Cao, Binglin Guo, Meixu Han, Zhipei Feng, Jinqi Tang, Xiaohan Mo, Junjian Wang, Qingpei Yang, Yuxin Pei, Yakov Kuzyakov, Junxiang Ding, Naoki Makita, Xitian Yang, Haiyang Zhang, Yong Zhao, Deliang Kong. Increased dependence on mycorrhizal fungi for nutrient acquisition under carbon limitation by tree girdling [J]. Plant Diversity, 2025, 47(03): 466-478. |
[6] | Kai-Yun Chen, Jin-Dan Wang, Rui-Qi Xiang, Xue-Dan Yang, Quan-Zheng Yun, Yuan Huang, Hang Sun, Jia-Hui Chen. Backbone phylogeny of Salix based on genome skimming data [J]. Plant Diversity, 2025, 47(02): 178-188. |
[7] | Gulbar Yisilam, Enting Zheng, Chuanning Li, Zhiyong Zhang, Ying Su, Zhenzhou Chu, Pan Li, Xinmin Tian. The chromosome-scale genome of black wolfberry (Lycium ruthenicum) provides useful genomic resources for identifying genes related to anthocyanin biosynthesis and disease resistance [J]. Plant Diversity, 2025, 47(02): 201-213. |
[8] | Miaomiao Shi, Ping Liang, Zhonglai Luo, Yu Zhang, Shiran Gu, Xiangping Wang, Xin Qian, Shuguang Jian, Kuaifei Xia, Shijin Li, Zhongtao Zhao, Tieyao Tu, Dianxiang Zhang. Genome compaction underlies the molecular adaptation of bay cedar (Suriana maritima) to the extreme habitat on the tropical coral islands [J]. Plant Diversity, 2025, 47(02): 337-340. |
[9] | Tian-Rui Wang, Xin Ning, Si-Si Zheng, Yu Li, Zi-Jia Lu, Hong-Hu Meng, Bin-Jie Ge, Gregor Kozlowski, Meng-Xiao Yan, Yi-Gang Song. Genomic insights into ecological adaptation of oaks revealed by phylogenomic analysis of multiple species [J]. Plant Diversity, 2025, 47(01): 53-67. |
[10] | Weidong Zhu, Jie Qian, Yingke Hou, Luke R. Tembrock, Liyun Nie, Yi-Feng Hsu, Yong Xiang, Yi Zou, Zhiqiang Wu. The evolutionarily diverged single-stranded DNA-binding proteins SSB1/SSB2 differentially affect the replication, recombination and mutation of organellar genomes in Arabidopsis thaliana [J]. Plant Diversity, 2025, 47(01): 127-135. |
[11] | Han-Ning Duan, Yin-Zi Jiang, Jun-Bo Yang, Jie Cai, Jian-Li Zhao, Lu Li, Xiang-Qin Yu. Skmer approach improves species discrimination in taxonomically problematic genus Schima (Theaceae) [J]. Plant Diversity, 2024, 46(06): 713-722. |
[12] | Yohannes Besufekad Setotaw, Jing Li, Jinfeng Qi, Canrong Ma, Mou Zhang, Cuilian Huang, Lei Wang, Jianqiang Wu. Salicylic acid positively regulates maize defenses against lepidopteran insects [J]. Plant Diversity, 2024, 46(04): 519-529. |
[13] | Shanni Cao, Xue Zhao, Zhuojin Li, Ranran Yu, Yuqi Li, Xinkai Zhou, Wenhao Yan, Dijun Chen, Chao He. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification [J]. Plant Diversity, 2024, 46(03): 372-385. |
[14] | Ya-Dong Qie, Qi-Wei Zhang, Scott A. M. McAdam, Kun-Fang Cao. Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species [J]. Plant Diversity, 2024, 46(03): 395-405. |
[15] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||