Plant Diversity ›› 2023, Vol. 45 ›› Issue (01): 36-44.DOI: 10.1016/j.pld.2022.08.004
• Articles • Previous Articles Next Articles
Da-Lv Zhong, Yuan-Cong Li, Jian-Qiang Zhang
Received:
2021-12-26
Revised:
2022-08-18
Online:
2023-02-23
Contact:
Jian-Qiang Zhang,E-mail:jqzhang@snnu.edu.cn
Supported by:
Da-Lv Zhong, Yuan-Cong Li, Jian-Qiang Zhang
通讯作者:
Jian-Qiang Zhang,E-mail:jqzhang@snnu.edu.cn
基金资助:
Da-Lv Zhong, Yuan-Cong Li, Jian-Qiang Zhang. Allopolyploid origin and niche expansion of Rhodiola integrifolia (Crassulaceae)[J]. Plant Diversity, 2023, 45(01): 36-44.
Da-Lv Zhong, Yuan-Cong Li, Jian-Qiang Zhang. Allopolyploid origin and niche expansion of Rhodiola integrifolia (Crassulaceae)[J]. Plant Diversity, 2023, 45(01): 36-44.
[1] Abbott, R., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246 [2] Akiyama, R., Sun, J., Hatakeyama, M., et al., 2021. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. New Phytol. 229, 3587-3601 [3] Arnheim, N. 1983. Concerted evolution of multigene families. In:Nei, M., Koehn, R. (Eds.), Evolution of Genes and Proteins. Sunderland:Sinauer. pp. 38-61 [4] Arrigo, N., De La Harpe, M., Litsios, G., et al., 2016. Is hybridization driving the evolution of climatic niche in Alyssum montanum? Am. J. Bot. 103, 1348-1357 [5] Alvarez, I., Wendel, J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417-434 [6] Barow, M. 2006. Endopolyploidy in seed plants. Bioessays 28, 271-281 [7] Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., et al., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol. Biogeogr. 21, 481-497 [8] Casazza, G., Boucher, F.C., Minuto, L., et al., 2017. Do floral and niche shifts favour the establishment and persistence of newly arisen polyploids? A case study in an Alpine primrose. Ann. Bot.119, 81-93 [9] Clausen, R.T. 1975. Sedum of North America North of the Mexican Plateau. Ithaca:Cornell University Press [10] Cody, W.J. 2000. Flora of the Yukon Territory, second ed. Ottawa:NRC Research Press [11] Cronn, R., Cedroni, M., Haselkorn, T., et al., 2002. PCR-mediated recombination in amplification products derived from polyploidy cotton. Theor. Appl. Genet. 104, 482-489 [12] Darriba, D., Taboada, G.L., Doallo, R., et al., 2012. jModelTest 2:more models, new heuristics and parallel computing. Nat. Methods 9, 772 [13] Di Cola, V., Broennimann, O., Petitpierre, B., et al., 2017. ecospat:an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774-787 [14] Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15 [15] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973 [16] Edgar, R.C. 2004. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 [17] Elith, J., Graham, C.H., Anderson, R.P., et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151 [18] Feliner, G.N., Rossello, J.A. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 44, 911-919 [19] Ficetola, G.F., Stock, M. 2016. Do hybrid-origin polyploid amphibians occupy transgressive or intermediate ecological niches compared to their diploid ancestors? J. Biogeogr. 43, 703-715 [20] Fowler, N.L., Levin, D.A. 1984. Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am. Nat. 124, 703-711 [21] Fu, K.T., Ohba, H. 2001. Crassulaceae. In:Wu, C.Y., Raven, P.H. (Eds.), Flora of China, vol. 8. Beijing:Science Press, pp. 202-268 [22] Grant, V. 1981. Plant Speciation. New York:Columbia University Press [23] Guest, H.J., Allen, G.A. 2014. Geographical origins of North American Rhodiola (Crassulaceae) and phylogeography of the western roseroot, Rhodiola integrifolia. J. Biogeogr. 41, 1070-1080 [24] Han, T.S., Hu, Z.Y., Du, Z.Q., et al., 2022. Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot. Plant Divers. 44, XXX-XXX [25] Hasumi H, Emori S. 2004. K-1 Coupled GCM (MIROC) Description. Center for Climate System Research, Univ. of Tokyo, Tokyo, Japan [26] Hermsmeier, U., Grann, J., Plescher, A. 2012. Rhodiola integrifolia:hybrid origin and Asian relatives. Botany 90, 1186-1190 [27] Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978 [28] Huson, D.H., Kloepper, T., Bryant, D. 2008. SplitsTree 4.0-Computation of phylogenetic trees and networks. Bioinformatics 14, 68-73 [29] Kadereit, J.W. 2015. The geography of hybrid speciation in plants. Taxon 64, 673-687 [30] Kelly, L.J., Leitch, A.R., Clarkson, J.J., et al., 2013. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes). Evolution 67, 80-94 [31] Levin, D.A. 1975. Minority cytotype exclusion in local plant populations. Taxon 24, 35-43 [32] Levin, D.A. 2002. The Role of Chromosomal Change in Plant Evolution. New York:Oxford University Press [33] Li, Y.C., Wen, J., Ren, Y., et al., 2019. From seven to three:integrative species delimitation supports major reduction in species number in Rhodiola section Trifida (Crassulaceae) on the Qinghai-Tibetan Plateau. Taxon 68, 268-279 [34] Lopez-Alvarez, D., Manzaneda, A.J., Rey, P.J., et al., 2015. Environmental niche variation and evolutionary diversification of the Brachypodium distachyon grass complex species in their native circum-Mediterranean range. Am. J. Bot. 102, 1073-1088 [35] Mallet, J. 2007. Hybrid speciation. Nature 446, 279 [36] Marchant, D.B., Soltis, D.E., Soltis, P.S. 2016. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 212, 708-718 [37] Mayr, E. 2000. The Biological Species Concept. Species Concepts and Phylogenetic Theory:a Debate. New York:Columbia University Press, pp. 17-29 [38] Molina-Henao, Y.F., Hopkins, R. 2019. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. Am. J. Bot. 106, 61-70 [39] Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259 [40] Rambaut, A., Drummond, A.J., Xie, D., et al., 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904 [41] R Core Team 2018. R:A Language and Environment for Statistical Computing. Vienna:R Foundation for Statistical Computing [42] Robertson, A., Rich, T.C., Allen, A.M., et al., 2010. Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Mol. Ecol. 19, 1675-1690 [43] Schoener, T.W. 1968. Anolis lizards of Bimini:resource partitioning in a complex fauna. Ecology 49, 704-726 [44] Soltis, P.S., Soltis, D.E. 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561-588 [45] Stamatakis, A. 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313 [46] Stebbins GL. 1950. Variation and Evolution in Plants. New York:Columbia University Press [47] Uhl, C.H. 1952. Heteroploidy in Sedum rosea (L.) Scop. Evolution 6, 81-86 [48] Wang, A., Melton, A.E., Soltis, D.E., et al., 2022. Potential distributional shifts in North America of allelopathic invasive plant species under climate change models. Plant Divers. 44, 11-19 [49] Warren, D.L., Glor, R.E., Turelli, M. 2008. Environmental niche equivalency versus conservatism:quantitative approaches to niche evolution. Evolution 62, 2868-2883 [50] Wood, T.E., Takebayashi, N., Barker, et al., 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. U.S.A. 106, 13875-13879 [51] Yamane, K., Yano, K., Kawahara, T. 2006. Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Res. 13, 197-204 [52] Zhang, J.Q., Meng, S.Y., Allen, G.A., et al., 2014a. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). Mol. Phylogenet. Evol. 77, 147-158 [53] Zhang, J.Q., Meng, S.Y., Wen, J., et al., 2014b. Phylogenetic relationships and character evolution of Rhodiola (Crassulaceae) based on nuclear ribosomal ITS and plastid trnL-F and psbA-trnH sequences. Syst. Bot. 39, 441-451 [54] Zhao, D.N., Ren, C.Q., Zhang, J.Q. 2021. Can plastome data resolve recent radiations? Rhodiola (Crassulaceae) as a case study. Bot. J. Linn. Soc. 197, 513-526 [55] Zimmer, E.A., Wen, J. 2013. Using nuclear gene data for plant phylogenetics:progress and prospects. Mol. Phylogenet. Evol. 66, 539-550 |
[1] | Ling Mao, Cen Guo, Liang-Zhong Niu, Yu-Jiao Wang, Guihua Jin, Yi-Zhou Yang, Ke-Cheng Qian, Yang Yang, Xuemei Zhang, Peng-Fei Ma, De-Zhu Li, Zhen-Hua Guo. Subgenome asymmetry of gibberellins-related genes plays important roles in regulating rapid growth of bamboos [J]. Plant Diversity, 2025, 47(01): 68-81. |
[2] | Wei Gu, Ting Zhang, Shui-Yin Liu, Qin Tian, Chen-Xuan Yang, Qing Lu, Xiao-Gang Fu, Heather R. Kates, Gregory W. Stull, Pamela S. Soltis, Douglas E. Soltis, Ryan A. Folk, Robert P. Guralnick, De-Zhu Li, Ting-Shuang Yi. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae [J]. Plant Diversity, 2024, 46(06): 683-697. |
[3] | Hui Feng, Achyut Kumar Banerjee, Wuxia Guo, Yang Yuan, Fuyuan Duan, Wei Lun Ng, Xuming Zhao, Yuting Liu, Chunmei Li, Ying Liu, Linfeng Li, Yelin Huang. Origin and evolution of a new tetraploid mangrove species in an intertidal zone [J]. Plant Diversity, 2024, 46(04): 476-490. |
[4] | Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae) [J]. Plant Diversity, 2024, 46(03): 344-352. |
[5] | Jian-Feng Huang, Clive T. Darwell, Yan-Qiong Peng. Enhanced and asymmetric signatures of hybridization at climatic margins: Evidence from closely related dioecious fig species [J]. Plant Diversity, 2024, 46(02): 181-193. |
[6] | Yumeng Ren, Lushui Zhang, Xuchen Yang, Hao Lin, Yupeng Sang, Landi Feng, Jianquan Liu, Minghui Kang. Cryptic divergences and repeated hybridizations within the endangered “living fossil” dove tree (Davidia involucrata) revealed by whole genome resequencing [J]. Plant Diversity, 2024, 46(02): 169-180. |
[7] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
[8] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses [J]. Plant Diversity, 2023, 45(04): 397-408. |
[9] | Mianmian Wang, Jun Yang, Jinpeng Wan, Dayun Tao, Jiawu Zhou, Diqiu Yu, Peng Xu. A hybrid sterile locus leads to the linkage drag of interspecific hybrid progenies [J]. Plant Diversity, 2020, 42(05): 370-375. |
[10] | Huai Ning, Jiaojun Yu, Xun Gong. Bidirectional natural hybridization between sympatric Ligularia vellerea and L. subspicata [J]. Plant Diversity, 2017, 39(04): 214-220. |
[11] | WU Jie, WANG Dong-Chao, YANG Yong-Ping, CHEN Jia-Hui. Homoploid Hybridization between Native Salix cavaleriei and Exotic Salix matsudana (Salicaceae) [J]. Plant Diversity, 2015, 37(01): 1-10. |
[12] | DING Yong-, CHANG Wei-, ZHANG Shi-Bao-, HU Hong. Construction of Leave Library by SSH and Preliminary Analysis of Genes Responsible for Heat Sress in Incarvillea zhongdiannensis [J]. Plant Diversity, 2012, 34(01): 47-55. |
[13] | LI Wan-Sha, LIU De-Tuan, YANG Yong-Ping, HU Xiang-Yang. Isolation and Analysis of Differential Expressed ESTs from Stem Trichomes of Lycopersicon esculentum (Solanaceae) [J]. Plant Diversity, 2011, 33(6): 660-666. |
[14] |
DONG Feng-Ping , HAN Su-Ying , ZHANG Shou-Gong , QI Li-Wang , LIU Bo , LI Xiu-Lan , CHEN Cheng-Bin. Physical Mapping of 25S rDNA on Metaphase Chromosomes of Populus (Salicaceae) in Five Sections by Fluorescence in Situ Hybridization [J]. Plant Diversity, 2007, 29(04): 423-428. |
[15] | SUO ZhiLi, ZHANG HuiJin, ZHANG ZhiMing,CHEN FuFei,CHEN FuHui. DNA Molecular Evidences of the Hybrids between Paeonia rockii and Psuffruticosa Based on ISSR Markers [J]. Plant Diversity, 2003, 25(14): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||