Plant Diversity ›› 2025, Vol. 47 ›› Issue (06): 876-882.DOI: 10.1016/j.pld.2023.03.002
Previous Articles Next Articles
Lin Zhanga, Xiao-Ming Lua, Hua-Zhong Zhub, Shan Gaoa, Jian Suna, Hai-Feng Zhua, Jiang-Ping Fangc, J. Julio Camarerod, Er-Yuan Lianga
Received:2022-10-03
Revised:2023-02-28
Online:2026-01-13
Published:2026-01-13
Contact:
Lin Zhang,E-mail:zhanglin@itpcas.ac.cn
Supported by:Lin Zhanga, Xiao-Ming Lua, Hua-Zhong Zhub, Shan Gaoa, Jian Suna, Hai-Feng Zhua, Jiang-Ping Fangc, J. Julio Camarerod, Er-Yuan Lianga
通讯作者:
Lin Zhang,E-mail:zhanglin@itpcas.ac.cn
基金资助:Lin Zhang, Xiao-Ming Lu, Hua-Zhong Zhu, Shan Gao, Jian Sun, Hai-Feng Zhu, Jiang-Ping Fang, J. Julio Camarero, Er-Yuan Liang. A rapid transition from spruce-fir to pine-broadleaf forests in response to disturbances and climate warming on the southeastern Qinghai-Tibet Plateau[J]. Plant Diversity, 2025, 47(06): 876-882.
Lin Zhang, Xiao-Ming Lu, Hua-Zhong Zhu, Shan Gao, Jian Sun, Hai-Feng Zhu, Jiang-Ping Fang, J. Julio Camarero, Er-Yuan Liang. A rapid transition from spruce-fir to pine-broadleaf forests in response to disturbances and climate warming on the southeastern Qinghai-Tibet Plateau[J]. Plant Diversity, 2025, 47(06): 876-882.
| Allen, C.D., Breshears D.D., 1998. Drought-induced shift of a forest/woodland ecotone: rapid landscape response to climate variation. Proc. Natl. Acad. Sci. U.S.A. 95, 14839-14842. Barrett, K., McGuire, A.D., Hoy, E.E., et al., 2011. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity. Ecol. Appl. 21, 2380-2396. Brice, M.H., Vissault, S., Vieira, W., et al., 2020. Moderate disturbances accelerate forest transition dynamics under climate change in the temperate-boreal ecotone of eastern North America. Global Change Biol. 26, 4418-4435. Calder, W.J., Shuman, B., 2017. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 98, 2585-2600. Camarero, J.J., Gutierrez, E., Fortin, M.J., 2000. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For. Ecol. Manage. 134, 1-16. Cao, J., Liu, H., Zhao, B., et al., 2021. High forest stand density exacerbates growth decline of conifers driven by warming but not broadleaved trees in temperate mixed forest in northeast Asia. Sci. Total Environ. 795, 148875. Chen, I.C., Hill, J.K., Ohlemuller, R., et al., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026. Chen, F., Ding, L., Piao, S., et al., 2021. The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era. Sci. Bull. 66, 1263-1266. China Forest Resources Reports, 2019. China Forestry Publishing House, Beijing, China. Danneyrolles, V., Dupuis, S., Fortin, G., et al., 2019. Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat. Commun. 10, 1265. De Frenne, P., Zellweger, F., Rodriguez-Sanchez, F., et al., 2019. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744-749. Dulamsuren, C., 2021. Organic carbon stock losses by disturbance: comparing broadleaved pioneer and late-successional conifer forests in Mongolia's boreal forest. For. Ecol. Manage. 499, 119636. Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677-697. Fang, J., Chen, A., Peng, C., et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320-2322. Falk, D.A., van Mantgem, P.J., Keeley, J.E., et al., 2022. Mechanisms of forest resilience. For. Ecol. Manage. 512, 120129. Fu, T., Liang, E., Lu, X., et al., 2020. Tree growth responses and resilience after the 1950-Zayu-Medog earthquake, southeast Tibetan Plateau. Dendrochronologia 62, 125724. Guo, F., Lenoir, J., Bonebrake, T.C., 2018. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315. Hansen, W.D., Turner, M.G., 2019. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340. Keenan, R.J., Reams, G.A., Achard, F., et al., 2015. Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For. Ecol. Manage. 352, 9-20. Lenoir, J., Gegout, J.C., Marquet, P.A., et al., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768-1771. Li, W., 1985. Tibetan Forest. Science Press, Beijing, China. (in Chinese). Liang, E., Wang, Y., Eckstein, D., et al., 2011. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 190, 760-769. Liang, E., Wang, Y., Piao, S., et al., 2016. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. U. S. A 113, 4380-4385. Liang, Y., Duveneck, M.J., Gustafson, E.J., et al., 2018. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Global Change Biol. 24, 335-351. Liu, H., Xu, C., Allen, C.D., et al., 2022. Nature-based framework for sustainable afforestation in global drylands under changing climate. Global Change Biol. 28, 2202-2220. Liu, J.Y., Zou, H.X., Bachelot, B., et al., 2021. Predicting the responses of subalpine forest landscape dynamics to climate change on the eastern Tibetan Plateau. Global Change Biol. 27, 4352-4366. Lu, X., Liang, E., Wang, Y., et al., 2021. Mountain treelines climb slowly despite rapid climate warming. Global Ecol. Biogeogr. 30, 305-315. Lu, X., Fu, T., Du, Q., et al., 2019. Tree regeneration after fire and logging in sub-alpine forest on the southeastern Tibetan Plateau. Chin. Sci. Bull. 64, 2907-2914 (in Chinese with English abstract). Lyu, L., Zhang, Q.B., Pellatt, M.G., et al., 2019. Drought limitation on tree growth at the Northern Hemisphere's highest tree line. Dendrochronologia 53, 40-47. Ma, B., Sun, J., 2018. Predicting the distribution of Stipa purpurea across the Tibetan plateau via the MaxEnt model. BMC Ecol. 18, 10. Maliniemi, T., Virtanen, R., 2021. Anthropogenic disturbance modifies long-term changes of boreal mountain vegetation under contemporary climate warming. Appl. Veg. Sci. 24, e12587. McIntyre, P.J., Thorne, J.H., Dolanc, C.R., et al., 2015. Twentieth-century shifts in forest structure in California: denser forests, smaller trees, and increased dominance of oaks. Proc. Natl. Acad. Sci. U.S.A. 112, 1458-1463. Mekonnen, Z.A., Riley, W.J., Randerson, J.T., et al., 2019. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Native Plants 5, 952-958. Miehe, G., Miehe, S., Vogel, J., et al., 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mount. Res. Dev. 27, 169-173. Millar, C.I., Stephenson, N.L., 2015. Temperate forest health in an era of emerging megadisturbance. Science 349, 823-826. Naudiyal, N., Wang, J., Ning, W., et al., 2021. Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply. Ecol. Indicat. 121, 107131. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259. Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 31, 161–75. Piao, S., Zhang, X., Wang, T., et al., 2019. Responses and feedback of the Tibetan Plateau's alpine ecosystem to climate change. Chin. Sci. Bull. 64, 2842-2855. Scheffer, M., Hirota, M., Holmgren, M., et al., 2012. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. U.S.A. 109, 21384-21389. Seidl, R., Thom, D., Kautz, M., et al., 2017. Forest disturbances under climate change. Nat. Clim. Change 7, 395-402. Tian, X., Shu, L., Wang, M., et al., 2007. Study on the spatial and temporal distribution of forest fire in Tibet. Fire Saf. Sci. 16, 10-14. (in Chinese). Turner, M.G., Braziunas, K.H., Hansen, W.D., et al., 2019. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl. Acad. Sci. U.S.A. 116, 11319-11328. Wang, Y., Bao, W., Wu, N., 2011. Shrub island effects on a high-altitude forest cutover in the eastern Tibetan Plateau. Ann. For. Sci. 68, 1127-1141. Xu, W., He, H.S., Huang, C., et al., 2022. Large fires or small fires, will they differ in affecting shifts in species composition and distributions under climate change? For. Ecol. Manage. 510, 120131. Yu, Z., You, W., Agathokleous, E., et al., 2021. Forest management required for consistent carbon sink in China's forest plantations. For. Ecosyst. 8, 54. Zhang, M., Li, Y.Q., 2001. Reflections on the implementation of natural forest protection projects in Tibet. Xizang Sci. Tech. 97, 59-63. (in Chinese). Zhang, P., Jeong, J.H., Yoon, J.H., et al., 2020. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095-1099. Zhao, G., Shao, G.F., 2002. Logging restrictions in China: a turning point for forest sustainability. J. Forecast. 100, 34-37. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
