Adams, D.C., Collyer, M.L, 2018. Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Syst. Biol. 67, 14-31. Allen, C.D., Macalady, A.K., Chenchouni, H., et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660-684. Baath, E., Anderson, T.H., 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955-963. Bi, J., 2012. A review of statistical methods for determination of relative importance of correlated predictors and Identification of drivers of consumer liking. J. Sens. Stud. 27, 87-101. Budescu, D.V., 1993. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542-551. Cavender-Bares, J., Ackerly, D.D., Baum, D.A., et al., 2004. Phylogenetic overdispersion in Floridian oak communities. Am. Nat., 163, 823-843. Cavender-Bares, J., Kozak, K.H., Fine, P.V., et al., 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693-715. Chevan, A., Sutherland, M., 1991. Hierarchical partitioning. Am. Stat. 45, 90-96. Cornwallis, C. K., Griffin, A. S., 2024. A guided tour of phylogenetic comparative methods for studying trait evolution. Annu. Rev. Ecol. Evol. Syst. 55, 181-204. Crisp, M.D., Cook, L.G., 2012. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol. 196, 681-694. Diniz-Filho, J.A.F., Bini, L.M., Rangel, T.F., et al., 2012. On the selection of phylogenetic eigenvectors for ecological analyses. Ecography 35, 239-249. Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125, 1-15. Feng, Y., Wang, B., 2024. Relative contribution of phylogeny on fruit type divergence decreases along latitudinal gradients. Acta Oecol.-Int. J. Ecol. 122, 103980. Freckleton, R. P., Harvey, P. H., Pagel, M., 2002. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712-726. Fridley, J.D., Bauerle, T.L., Craddock, A., et al., 2022. Fast but steady: An integrated leaf-stem-root trait syndrome for woody forest invaders. Ecol. Lett. 25, 900-912. Gao, M., Ye, Y., Zheng, Y., et al., 2025. A comprehensive analysis of R’s application in ecological research from 2008 to 2023. J. Plant Ecol. 18, rtaf010. Garland, T., Ives, A. R., 2000. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155, 346-364. Genizi, A., 1993. Decomposition of R2 in multiple regression with correlated regressors. Statistica Sinica 3, 407-420. Gromping, U., 2007. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 61, 139-147. Guo, K., Pysek, P., Chytry, M., et al., 2022. Ruderals naturalize, competitors invade: Varying roles of plant adaptive strategies along the invasion continuum. Funct. Ecol. 36, 2469-2479. Guo, L., Deng, M., Li, X., et al., 2024. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol. Lett. 27, e14330. Ho, L. S. T., Ane, C., 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397-408. Ives, A. R., Garland, T., 2010. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9-26. Ives, A.R., 2019. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst. Biol. 68, 234-251. Ives, A. R., 2022. Random errors are neither: On the interpretation of correlated data. Methods Ecol. Evol. 13, 2092-2105. Jin, Y., Qian, H., 2023. U.PhyloMaker: An R package that can generate large phylogenetic trees for plants and animals. Plant Divers. 45, 347-352. Johnson, J., Omland, K., 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101-108. Kahl, T., Arnstadt, T., Baber, K., et al., 2017. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manage. 391, 86-95. Kruskal, W. H., Majors, R., 1989. Concepts of relative importance in recent scientific literature. Am. Stat. 43, 2-6. Lai, J.S., Tang, J., Li, T.Y., et al., 2024. Evaluating the relative importance of predictors in Generalized Additive Models using thegam.hpR package. Plant Divers. 46, 542--546. Lai, J.S., Zhu, W.J., Cui, D.F., et al., 2023. Extension of the glmm.hp package to zero-inflated generalized linear mixed models and multiple regression. J. Plant Ecol. 16, rtad038. Lai, J.S., Zou, Y., Zhang, J.L., et al., 2022a. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 13, 782-788. Lai, J.S., Zou, Y., Zhang, S., et al., 2022b. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. J. Plant Ecol. 15, 1302-1307. Laliberte, E., Kardol, P., Didham, R.K., et al., 2017. Soil fertility shapes belowground food webs across a regional climate gradient. Ecol. Lett. 20, 1273-1284. Lindeman, R. H., Merenda, P. F., Gold, R. Z., 1980. Introduction to Bivariate and Multivariate Analysis. Scott, Foresman & Company. Losos, J. B., 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995-1003. Lynch, M., 1991. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065-1080. Mao, L.F., Dong, Y.R., Xing, B.B., et al., 2023. Maximum canopy height is associated with community phylogenetic structure in boreal forests. J. Plant Ecol.16, rtac104. Medeiros, C. D., Henry, C., Trueba, S., et al., 2023. Predicting plant species climate niches on the basis of mechanistic traits. Funct. Ecol. 37, 2786-2808. Munkemuller, T., Lavergne, S., Bzeznik, B., et al., 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743-756. Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133-142. Niinemets, U., 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453-469. Niinemets, U., 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manage. 260, 1623-1639. O’Brien, M. J., Leuzinger, S., Philipson, C. D., et al., 2014. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Chang. 4, 710-714. Omer, A., Fristoe, T., Yang, Q., et al., 2022. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants 8, 906-914. Ostonen, I., Puttsepp, U., Biel, C., et al., 2007. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426-442. Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., .. & Cornelissen, J. H. C., 2016. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715-716.R Core Team, 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. R Core Team, 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Ray-Mukherjee, J., Nimon, K., Mukherjee, S., et al., 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods Ecol. Evol. 5, 320-328. Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143-S164. Uyeda, J. C., Zenil-Ferguson, R., Pennell, M. W., 2018. Rethinking phylogenetic comparative methods. Syst. Biol. 67, 1091-1109. van Kleunen, M., Xu, X., Yang, Q., et al., 2020. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201. Wang, G., Ives, A. R., Zhu, H., et al., 2022. Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics. Ecology 103, e03555. Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Springer-Verlag. https://ggplot2.tidyverse.org. Wiens, J. J., Graham, C. H., 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519-539. Wright, I. J., Reich, P. B., Westoby, M., et al. 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. Yang, S., Ooi, M. K., Falster, D. S., et al., 2025. Continental-scale empirical evidence for relationships between fire response strategies and fire frequency. New Phytol. 246, 528-542. |