Almuhayawi, M.S., Al Jaouni, S.K., Almuhayawi, S.M., et al., 2021. Elevated CO2 improves the nutritive value, antibacterial, anti-inflammatory, antioxidant and hypocholestecolemic activities of lemongrass sprouts. Food Chem. 357, 129730. https://doi.org/10.1016/j.foodchem.2021.129730. Bardgett, R.D., van Der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515(7528), 505-511. https://doi.org/10.1038/nature13855. Bhaskara, R.M.V., Arul, J., Angers, P., et al., 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J. Agric. Food Chem. 47(3), 1208-1216. https://doi.org/10.1021/jf981225k. Blumenthal, D.M., Carillo, Y., Kray, J.A., et al., 2022. Soil disturbance and invasion magnify CO2 effects on grassland productivity, reducing diversity. Global Change Biol. 28(22), 6741-6751. https://doi.org/10.1111/gcb.16383. Carrascosa, M., Sanchez-Moreno, S., Alonso-Prados, J.L., 2014. Relationships between nematode diversity, plant biomass, nutrient cycling and soil suppressiveness in fumigated soils. Eur. J. Soil Biol. 62, 49-59. https://doi.org/10.1016/j.ejsobi.2014.02.009. Castro-Diez, P., Godoy, O., Alonso, A., et al., 2014. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17(1), 1-12. https://doi.org/10.1111/ele.12197. Chen, J., Zhang, H.Y., Liu, M.C., et al., 2022. Plant invasions facilitated by suppression of root nutrient acquisition rather than by disruption of mycorrhizal association in the native plant. Plant Diver. 44, 499-504. https://doi.org/10.1016/j.pld.2021.12.004. Day, F.P., Schroeder, R.E., Stover, D.B., et al., 2013. The effects of 11 yr of CO2 enrichment on roots in a Florida scrub-oak ecosystem. New Phytol. 200(3), 778-787. https://doi.org/10.1111/nph.12246. Dhakshinamoorthy, S., Mariama, K., Elsen, A., et al., 2014. Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection. Nematology, 16(5), 565-576. https://doi.org/10.1163/15685411-00002788. Dong, J., Hunt, J., Delhaize, E., et al., 2021. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates:a review. Sci. Total Environ. 754, 142434. https://doi.org/10.1016/j.scitotenv.2020.142434. Elgersma, K.J., Ehrenfeld, J.G., Yu, S., et al., 2011. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling. Oecologia, 167, 733-745. https://doi.org/10.1007/s00442-011-2022-0. Feng Y-L. 2008. Nitrogen allocation and partitioning in invasive and native Eupatorium species. Physiol. Plantarum 132(3), 350-358. https://doi:10.1111/j.1399-3054.2007.01019.x. Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics:extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18(1), 13-29. https://doi.org/10.1016/s0929-1393(01)00152-4. Fitoussi, N., Pen-Mouratov, S., Steinberger, Y., 2016. Soil free-living nematodes as bio-indicators for assaying the invasive effect of the alien plant heterotheca subaxillaris in a coastal dune ecosystem. Appl. Soil Ecol. 102, 1-9. https://doi.org/10.1016/j.apsoil.2016.02.005. Hager, H.A., Ryan, G.D., Kovacs, H.M., et al., 2016. Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses. BMC Ecol. 16(1), 1-13. https://doi.org/10.1186/s12898-016-0082-z. Han, M., Zhang, H., Liu, M., et al., 2024. Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant. Plant Diver. 46, 510-518. https://doi.org/10.1016/j.pld.2024.04.003. Huang, K., Kong, D.L., Lu, X.R., et al., 2020. Lesser leaf herbivore damage and structural defense and greater nutrient concentrations for invasive alien plants:evidence from 47 pairs of invasive and non-invasive plants. Sci. Total Environ. 723, 137829. https://doi.org/10.1016/j.scitotenv.2020.137829. IPCC, 2014:Climate change 2014:synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 151 pp. Jo, I., Fridley, J.D., Frank, D.A., 2017. Invasive plants accelerate nitrogen cycling:evidence from experimental woody monocultures. J. Ecol. 105(4),1105-1110. https://doi.org/10.1111/1365-2745.12732. Johnson, S.N., Hartley, S.E., 2018. Elevated carbon dioxide and warming impact silicon and phenolic-based defences differently in native and exotic grasses. Global Change Biol. 24(9), 3886-3896. https://doi.org/10.1111/gcb.13971. Jurova, J., Renco, M., Gomoryova, E., et al., 2020. Effects of the invasive common milkweed (Asclepias syriaca) on nematode communities in natural grasslands. Nematology, 22(4), 423-438. https://doi.org/10.1163/15685411-00003314. Kao-Kniffin, J., Balser, T.C., 2007. Elevated CO2 differentially alters belowground plant and soil microbial community structure in reed canary grass-invaded experimental wetlands. Soil Biol. Biochem. 39(2), 517-525. https://doi.org/10.1016/j.soilbio.2006.08.024. Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., et al., 2020. lmerTest:tests in linear mixed effects models. R package version 3.1-3. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf. Lai, J., Zou, Y., Zhang, J., et al., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 13, 782-788. doi:10.1111/2041-210X.13800. Lei, Y.B., Wang, W.B., Feng, Y.L., et al., 2012. Synergistic interactions of CO2 enrichment and nitrogen deposition promote growth and ecophysiological advantages of invading Eupatorium adenophorum in Southwest China. Planta, 236(4), 1205-1213. https://doi.org/10.1007/s00425-012-1678-y. Li, S., Song, M., Jing, S., 2021. Effects of different carbon inputs on soil nematode abundance and community composition. Appl. Soil Ecol. 163, 103915. https://doi.org/10.1016/j.apsoil.2021.103915. Liu, M., Chen, X., Qi, J., et al., 2008. A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Appl. Soil Ecol. 40(2), 250-259. https://doi.org/10.1016/j.apsoil.2008.05.001. Liu, Y., Oduor, A.M., Zhang, Z., et al., 2017. Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biol. 23(8), 3363-3370. https://doi.org/10.1111/gcb.13579. Lu, X.R., Feng, W.W., Wang, W.J., et al., 2022. AMF colonization and community of a temperate invader and co-occurring natives grown under different CO2 concentrations for three years. J. Plant Ecol. 15(3), 437-449. https://doi.org/10.1093/jpe/rtab075. Mao, X., Li, H., Chen, X., et al., 2004. Extraction efficiency of soil nematodes by different methods. Chinese J. Ecol. 23(3), 149-151. Muller-Scharer, H., Schaffner, U., Steinger, T., 2004. Evolution in invasive plants:implications for biological control. Trends Ecol. Evol. 19(8), 417-422. https://doi.org/10.1016/j.tree.2004.05.010. Oksanen, J., Blanchet, F.G., Friendly, M., et al., 2020. vegan:community ecology package. A grammar of data manipulation. R package version 2.5-7. https://cran.r-project.org/web/packages/vegan/vegan.Pdf. Porazinska, D.L., Seastedt, T.R., Gendron, E.M.S., et al., 2022. Invasive annual cheatgrass enhances the abundance of native microbial and microinvertebrate eukaryotes but reduces invasive earthworms. Plant Soil 473(1-2), 591-604. https://doi.org/10.1007/s11104-022-05312-9. Pysek, P., Richardson, D.M., 2007. Traits associated with invasiveness in alien plants:where do we stand?. Biol. Invasions, 93, 97-125. Qin, Z., Xie, J.F., Quan, G.M., et al., 2019. Changes in the soil meso-and micro-fauna community under the impacts of exotic Ambrosia artemisiifolia. Ecol. Res. 34(2), 265-276. https://doi.org/10.1111/1440-1703.1271. R Core Team 2021 R:A language and environment for statistical computing. 31/March/2021. http://www.R-project.org/. Rai, A., Singh, A.K., Singh, N., et al., 2020. Effect of elevated CO2 on litter functional traits, mass loss and nutrient release of two subtropical species in free air carbon enrichment facility. Environ. Exp. Bot. 172, 103994. https://doi.org/10.1016/j.envexpbot.2020.103994. Reid, M.L., Emery, S.M., 2018. Scale-dependent effects of Gypsophila paniculata invasion and management on plant and soil nematode community diversity and heterogeneity. Biol. Conserv. 224, 153-161. https://doi.org/10.1016/j.biocon.2018.05.026. Renco, M., Kornobis, F.W., Domaradzki, K., et al., 2019. How does an invasive Heracleum sosnowskyi affect soil nematode communities in natural conditions? Nematology, 21(1), 71-89. https://doi.org/10.1163/15685411-00003196. Shao, Y., Wang, X., Zhao, J., et al., 2016. Subordinate plants sustain the complexity and stability of soil micro-food webs in natural bamboo forest ecosystems. J. Appl. Ecol. 53(1), 130-139. https://doi.org/10.1111/1365-2664.12538. Song, L., Wu, J., Li, C., et al., 2009. Different responses of invasive and native species to elevated CO2 concentration. Acta Oecol. 35(1), 128-135. https://doi.org/10.1016/j.actao.2008.09.002. Thakur, M.P., Del Real, I.M., Cesarz, S., et al., 2019. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation. Soil Biol. Biochem. 135, 184-193. https://doi.org/10.1016/j.soilbio.2019.04.020. van Kleunen, M., Weber, E., Fischer, M., 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13(2), 235-245. https://doi.org/10.1111/j.1461-0248.2009.01418.x. Vila, M., Espinar, J.L., Hejda, M., et al., 2011. Ecological impacts of invasive alien plants:a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14(7), 702-708. https://doi.org/10.1111/j.1461-0248.2011.01628.x. Waller, L.P., Allen, W.J., Barratt, B.I.P., et al., 2020. Biotic interactions drive ecosystem responses to exotic plant invaders. Science, 368(6494), 967-972. https://doi.org/10.1126/science.aba2225. Wang, S., Chen, J.-X., Liu, M.-C., et al., 2022. Phenotypic plasticity and exotic plant invasions:effects of soil nutrients, species nutrient requirements, and types of traits. Physiol. Plantarum, 174(1):e13637. https://doi.org/10.1111/ppl.13637. Weinhold, A., Doll, S., Liu, M., et al., 2022. Tree species richness differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species. J. Ecol. 110(1), 97-116. https://doi.org/10.1111/1365-2745.13777. Xia, M., Talhelm, A.F., Pregitzer, K.S., 2015. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phytol. 208(3), 715-726. http://doi:10.1111/nph.13494. Xiao, H.F., Schaefer, D.A., Lei, Y.B., et al., 2013. Influence of invasive plants on nematode communities under simulated CO2 enrichment. Eur. J. Soil Biol. 58, 91-97. https://doi.org/10.1016/j.ejsobi.2013.07.002. Yeates, G.W., Bongers, T., de Goede, R.G.M., et al., 1993. Feeding habitats in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 25(3), 315-331. Yeates, G.W., Ferris, H., Moens, T., et al., 2009. The role of nematodes in ecosystems. In:Nematodes as Environ-Mental Bioindicators (eds Wilson MJ, Kakouli-Duarte T). CABI, Wallingford, UK. pp:1-44. Yeates, G.W., Newton, P.C.D., Ross, D.J., 1999. Response of soil nematode fauna to naturally elevated CO2 levels influenced by soil pattern. Nematology, 1(3), 285-293. Yeates, G.W., 2003. Nematodes as soil indicators:functional and biodiversity aspects. Biol. Fertil. Soils, 37(4), 199-210. https://doi.org/doi:10.1007/s00374-003-0586-5. Zhang, L., Yang, Y., Zhan, X., et al., 2010. Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China. J. Environ. Qual. 39(1), 251-259. https://doi.org/10.2134/jeq2009.0109. Zhang, P., Neher, D.A., Li, B., et al., 2018. The impacts of above-and belowground plant input on soil microbiota:invasive Spartina alterniflora versus native Phragmites australis. Ecosystems, 21, 469-481. https://doi.org/10.1007/s10021-017-0162-8. Zhou, J., Wu, J., Huang, J., et al., 2022. A synthesis of soil nematode responses to global change factors. Soil Biol. Biochem. 165, 108538. https://doi.org/10.1016/j.soilbio.2021.108538. |