Plant Diversity ›› 2025, Vol. 47 ›› Issue (04): 576-592.DOI: 10.1016/j.pld.2025.05.010
• Articles • Previous Articles Next Articles
Xiao-Hua Lin (林晓华)a,b,c, Si-Yu Xie (解思宇)a,b,c, Dai-Kun Ma (马代锟)a,b,d, Shuai Liao (廖帅)e, Bin-Jie Ge (葛斌杰)f, Shi-Liang Zhou (周世良)a,b, Liang Zhao (赵亮)c, Chao Xu (徐超)a,b, De-Yuan Hong (洪德元)a,b, Bin-Bin Liu (刘彬彬)a,b
Received:
2025-03-06
Revised:
2025-05-01
Online:
2025-08-13
Published:
2025-08-13
Contact:
Liang Zhao (赵亮),E-mail:biology_zhaoliang@126.com;Chao Xu (徐超),E-mail:xuchao@ibcas.ac.cn;De-Yuan Hong (洪德元),E-mail:hongdy@ibcas.ac.cn;Bin-Bin Liu (刘彬彬),E-mail:liubinbin@ibcas.ac.cn
Supported by:
Xiao-Hua Lin (林晓华)a,b,c, Si-Yu Xie (解思宇)a,b,c, Dai-Kun Ma (马代锟)a,b,d, Shuai Liao (廖帅)e, Bin-Jie Ge (葛斌杰)f, Shi-Liang Zhou (周世良)a,b, Liang Zhao (赵亮)c, Chao Xu (徐超)a,b, De-Yuan Hong (洪德元)a,b, Bin-Bin Liu (刘彬彬)a,b
通讯作者:
Liang Zhao (赵亮),E-mail:biology_zhaoliang@126.com;Chao Xu (徐超),E-mail:xuchao@ibcas.ac.cn;De-Yuan Hong (洪德元),E-mail:hongdy@ibcas.ac.cn;Bin-Bin Liu (刘彬彬),E-mail:liubinbin@ibcas.ac.cn
基金资助:
Xiao-Hua Lin (林晓华), Si-Yu Xie (解思宇), Dai-Kun Ma (马代锟), Shuai Liao (廖帅), Bin-Jie Ge (葛斌杰), Shi-Liang Zhou (周世良), Liang Zhao (赵亮), Chao Xu (徐超), De-Yuan Hong (洪德元), Bin-Bin Liu (刘彬彬). Phylogenomic insights into Adenophora and its allies (Campanulaceae): Revisiting generic delimitation and hybridization dynamics[J]. Plant Diversity, 2025, 47(04): 576-592.
Xiao-Hua Lin (林晓华), Si-Yu Xie (解思宇), Dai-Kun Ma (马代锟), Shuai Liao (廖帅), Bin-Jie Ge (葛斌杰), Shi-Liang Zhou (周世良), Liang Zhao (赵亮), Chao Xu (徐超), De-Yuan Hong (洪德元), Bin-Bin Liu (刘彬彬). Phylogenomic insights into Adenophora and its allies (Campanulaceae): Revisiting generic delimitation and hybridization dynamics[J]. Plant Diversity, 2025, 47(04): 576-592.
APG IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV. Bot. J. Linn. Soc. 181, 1-20. https://doi.org/10.1111/boj.12385. Bankevich, A., Nurk, S., Antipov, D., et al., 2012. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. https://doi.org/10.1089/cmb.2012.0021. Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170. Borowiec, M.L., 2019. Spruceup:fast and flexible identification, visualization, and removal of outliers from large multiple sequence alignments. J. Open Source Softw. 4, 1635. https://doi.org/10.21105/joss.01635. Borowiec, M.L., 2016. AMAS:a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4, e1660. https://doi.org/10.7717/peerj.1660. Brown, J.W., Walker, J.F., Smith, S.A., 2017. Phyx:phylogenetic tools for unix. Bioinformatics 33, 1886-1888. https://doi.org/10.1093/bioinformatics/btx063. Cai, L.M., Xi, Z.X., Lemmon, E.M., et al., 2021. The perfect storm:gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Syst. Biol. 70, 491-507. https://doi.org/10.1093/sysbio/syaa083. Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T., 2009. trimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973. https://doi.org/10.1093/bioinformatics/btp348. Castroviejo, S., Aldasoro, J.J., Alarcon, M., 2010. Campanulaceae, in:Euro+Med Plantbase-the Information Resource for Euro-Mediterranean Plant Diversity. Chamala, S., Garcia, N., Godden, G.T., et al., 2015. MarkerMiner 1.0:a new application for phylogenetic marker development using angiosperm transcriptomes. Appl. Plant Sci. 3, 1400115. https://doi.org/10.3732/apps.1400115. Cheng, Y.L., Miller, M.J., Zhang, D.Z, et al., 2021. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. Proc. Natl. Acad. Sci. U.S.A. 118, e2023918118. https://doi.org/10.1073/pnas.2023918118. Contandriopoulos, J., 1984. Polyphyletisme des campanules annuelles. Bull. Soc. Bot. Fr. Lettres Bot. 131, 315-324. https://doi.org/10.1080/01811797.1984.10824641. Crane, P.R., Ge, S., Hong, D.Y., et al., 2017. The Shenzhen Declaration on Plant Sciences-Uniting plant sciences and society to build a green, sustainable Earth. J. Syst. Evol. 55, 415-416. https://doi.org/10.1111/jse.12283. Crowl, A.A., Miles, N.W., Visger, C.J., et al., 2016. A global perspective on Campanulaceae:Biogeographic, genomic, and floral evolution. Am. J. Bot. 103, 233-245. https://doi.org/10.3732/ajb.1500450. Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. https://doi.org/10.1093/bioinformatics/btr330. Doyle, J.J., 2022. Defining coalescent genes:theory meets practice in organelle phylogenomics. Syst. Biol. 71, 476-489. https://doi.org/10.1093/sysbio/syab053. Duan, L., Fu, L., Chen, H.F., 2023. Phylogenomic cytonuclear discordance and evolutionary histories of plants and animals. Sci. China Life Sci. 66, 2946-2948. https://doi.org/10.1007/s11427-023-2456-6. Duchene, D.A., Bragg, J.G., Duchene, S., et al., 2018. Analysis of phylogenomic tree space resolves relationships among Marsupial families. Syst. Biol. 67, 400-412. https://doi.org/10.1093/sysbio/syx076. Eddie, W.M.M., Shulkina, T., Gaskin, J., et al., 2003. Phylogeny of Campanulaceae s. str. inferred from its sequences of nuclear ribosomal DNA. Ann. Missouri Bot. Gard. 90, 554-575. https://doi.org/10.2307/3298542. Federov, A., 1957. Adenophora, in:Komarov, V.L. (Ed.), Flora URSS. Izdatel'stvo Academii Nauk SSSR, Moskva-Lenigrad. Fischer, F.E.L., 1823. Genera plantarum duo. Memoires de la Societe imperiale des naturalistes de Moscou 6, 165. Ge, S., Hong, D.Y., 1994a. Biosystematic studies on Adenophora potaninii Korsh. complex (Campanulaceae) I. Phenotypic plasticity. Acta Phytotax. Sin. 32, 489-503. Ge, S., Hong, D.Y., 1994b. Biosystematic studies on Adenophora potaninii Korsh. complex (Campanulaceae) II. Crossing experiment. Cathaya 6, 15-26. Ge, S., Hong, D.Y., 1995. Biosystematic studies on Adenophora potaninii Korsh. complex (Campanulaceae) III. Genetic variation and taxonomic value of morphological characters. Acta Phytotax. Sin. 33, 433-443. Ge, S., Hong, D.Y., 1998. Biosystematic studies on Adenophora potaninii Korsh. complex (Campanulaceae) IV. Allozyme variation and differentiation. Acta Phytotax. Sin. 36, 481-489. Ge, S., Hong, D.Y., 2010. Biosystematic studies on Adenophora potaninii Korsh. complex (Campanulaceae) V. A taxonomic treatment. J. Syst. Evol. 48, 445-454. https://doi.org/10.1111/j.1759-6831.2010.00104.x. He, K., Jiang, X., 2014. Sky islands of southwest China. I:an overview of phylogeographic patterns. Chin. Sci. Bull. 59, 585-597. https://doi.org/10.1007/s11434-013-0089-1. Hong, D.Y., 1983. Campanulaceae, Goodeniaceae, Stylidiaceae. In:Wu, Z.Y. (Ed.), Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp. 203. Hong, D.Y., 2015. Campanulaceae. In:Sun, H., Watson, M.F. (Eds.), Flora of Pan-Himalaya. Science Press, Beijing, pp.60-253. Hong, D.Y., Ge, S., Lammers, T.G., Klein, L., 2011. Campanulaceae. In:Wu, Z.Y., Raven, P.H., Hong, D.Y. (Eds.), Flora of China Cucubitaceae through Valerianaceae with Annonaceae and Berbaridaceae. Science Press, Beijing, pp. 505-563. Hu, X.Z., Guo, C., Qin, S.Y., et al., 2024. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae:Bambusoideae). Plant Divers. 46, 344-352. https://doi.org/10.1016/j.pld.2023.06.001. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. https://doi.org/10.1093/molbev/msj030. Huson, D.H., Richter, D.C., Rausch, C., et al., 2007. Dendroscope:An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460. https://doi.org/10.1186/1471-2105-8-460. Jackson, C., McLay, T., Schmidt-Lebuhn, A.N., 2023. Hybpiper-nf and paragone-nf:Containerization and additional options for target capture assembly and paralog resolution. Appl. Plant Sci. 11, e11532. https://doi.org/10.1002/aps3.11532. Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. https://doi.org/10.1186/s13059-020-02154-5. Jin, Z.T., Hodel, R.G.J., Ma, D.K., et al., 2023. Nightmare or delight:taxonomic circumscription meets reticulate evolution in the phylogenomic era. Mol. Phylogenet. Evol. 189, 107914. https://doi.org/10.1016/j.ympev.2023.107914. Jin, Z.T., Lin, X.H., Ma, D.K., et al., 2024a. Unraveling the Web of Life:Incomplete lineage sorting and hybridization as primary mechanisms over polyploidization in the evolutionary dynamics of pear species. bioRxiv. doi:10.1101/2024.07.29.605463. Jin, Z.T., Ma, D.K., Liu, G.N., et al., 2024b. Advancing Pyrus phylogeny:Deep genome skimming-based inference coupled with paralogy analysis yields a robust phylogenetic backbone and an updated infrageneric classification of the pear genus (Maleae, Rosaceae). Taxon 73, 784-799. https://doi.org/10.1002/tax.13163. Johnson, M.G., Gardner, E.M., Liu, Y., et al., 2016. HybPiper:extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4, 1600016. https://doi.org/10.3732/apps.1600016. Jones, K.E., Korotkova, N., Petersen, J., et al., 2017. Dynamic diversification history with rate upshifts in Holarctic bell-flowers (Campanula and allies). Cladistics 33, 637-666. https://doi.org/10.1111/cla.12187. Junier, T., Zdobnov, E.M., 2010. The Newick utilities:high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669-1670. https://doi.org/10.1093/bioinformatics/btq243. Kang, J.N., Lee, S.M., Choi, J.W., et al., 2024. First contiguous genome assembly of Japanese Lady Bell (Adenophora triphylla) and insights into development of different leaf types. Genes 15, 58. https://doi.org/10.3390/genes15010058. Karbstein, K., Kosters, L., Hodac, L., et al., 2024. Species delimitation 4.0:integrative taxonomy meets artificial intelligence. Trends Ecol. Evol. 39, 771-784. https://doi.org/10.1016/j.tree.2023.11.002. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199. Lammers, T.G., 2007a. World checklist and bibliography of Campanulaceae. Royal Botanic Gardens, Kew, Richmond. Lammers, T.G., 2007b. Campanulaceae. In:Kadereit, J.W., Jeffrey, C. (Eds.), The Families and Genera of Vascular Plants. Vol. VIII. Flowering Plants. Eudicots. Asterales. Heidelberg, Springer Berlin. pp. 26-56. Lanfear, R., Calcott, B., Ho, S.Y.W., et al., 2012. Partitionfinder:combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695-1701. https://doi.org/10.1093/molbev/mss020. Lanfear, R., Calcott, B., Kainer, D., et al., 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 82. https://doi.org/10.1186/1471-2148-14-82. Lanfear, R., Frandsen, P.B., Wright, A.M., et al., 2017. PartitionFinder 2:new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772-773. https://doi.org/10.1093/molbev/msw260. Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. https://doi.org/10.1038/nmeth.1923. Langmead, B., Wilks, C., Antonescu, V., et al., 2019. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35, 421-432. https://doi.org/10.1093/bioinformatics/bty648. Li, C.J., Wang, R.N., Li, D.Z., 2020. Comparative analysis of plastid genomes within the Campanulaceae and phylogenetic implications. PLoS ONE 15, e0233167. https://doi.org/10.1371/journal.pone.0233167. Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. https://doi.org/10.1093/bioinformatics/btp324. Li, H., Handsaker, B., Wysoker, A., et al., 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352. Li, J.L., Wang, S., Yu, J., et al., 2013. A modified CTAB protocol for plant DNA extraction. Chin. Bull. Bot. 48, 72-78. https://doi.org/10.3724/SP.J.1259.2013.00072. Li, Y.F., Luo, L., Liu, Y., et al., 2024. The Bryophyte Phylogeny Group:A revised familial classification system based on plastid phylogenomic data. J. Syst. Evol. 62, 577-588. https://doi.org/10.1111/jse.13063. Liu, B.B., Ma, Z.Y., Ren, C., et al., 2021. Capturing single-copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics:A case study in Vitaceae. J. Syst. Evol. 59, 1124-1138. https://doi.org/10.1111/jse.12806. Liu, B.B., Ren, C., Kwak, M., et al., 2022. Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. J. Integr. Plant Biol. 64, 1020-1043. https://doi.org/10.1111/jipb.13246. Liu, G.N., Ma, D.K., Zhang, Y., et al., 2023. Phylogenomic analyses support a new infrageneric classification of Pourthiaea (Maleae, Rosaceae) using multiple inference methods and extensive taxon sampling. Taxon 72, 1285-1302. https://doi.org/10.1002/tax.13083. Liu, J., Luo, Y.H., Li, D.Z., et al., 2017. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions:retrospect and prospect. Biodivers. Sci. 25, 163-174. https://doi.org/10.17520/biods.2016293. Liu, L., Yu, L.L., 2010. Phybase:an R package for species tree analysis. Bioinformatics 26, 962-963. https://doi.org/10.1093/bioinformatics/btq062. Lyu, H.M., Zhou, R.C., Shi, S.H., 2015. Recent advances in the study of ecological speciation. Biodivers. Sci. 23, 398-407. https://www.biodiversity-science.net/CN/Y2015/V23/I3/398. Mai, U., Mirarab, S., 2018. TreeShrink:fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19, 272. https://doi.org/10.1186/s12864-018-4620-2. Malinsky, M., Matschiner, M., Svardal, H., 2021. Dsuite-Fast D -statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584-595. https://doi.org/10.1111/1755-0998.13265. Mansion, G., Parolly, G., Crowl, A.A., et al., 2012. How to handle speciose clades? Mass taxon-sampling as a strategy towards Illuminating the natural history of Campanula (Campanuloideae). PLoS ONE 7, e50076. https://doi.org/10.1371/journal.pone.0050076. McKenna, A., Hanna, M., Banks, E., et al., 2010. The genome analysis toolkit:a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303. https://doi.org/10.1101/gr.107524.110. Minh, B.Q., Schmidt, H.A., Chernomor, O., et al., 2020. IQ-TREE 2:New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. https://doi.org/10.1093/molbev/msaa015. Nakamura, T., Yamada, K.D., Tomii, K., et al., 2018. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490-2492. https://doi.org/10.1093/bioinformatics/bty121. Nie, Z.L., Hodel, R., Ma, Z.Y., et al., 2023. Climate-influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. J. Integr. Plant Biol. 65, 1183-1203. https://doi.org/10.1111/jipb.13466. Pease, J.B., Brown, J.W., Walker, J.F., et al., 2018. Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. Am. J. Bot. 105, 385-403. https://doi.org/10.1002/ajb2.1016. PPG I, 2016. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 54, 563-603. https://doi.org/10.1111/jse.12229. Pyron, R.A., O'Connell, K.A., Duncan, S.C., et al., 2022. Speciation hypotheses from phylogeographic delimitation yield an integrative taxonomy for seal salamanders (Desmognathus monticola). Syst. Biol. 72, 179-197. https://doi.org/10.1093/sysbio/syac065. Qiu J.Z., Hong D.Y., 1993. A biosystematic study on Adenophora gmelinii complex (Campanulaceae). Acta Phytotax. Sin. 31, 17-41. Slater, G.S.C., Birney, E., 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31. https://doi.org/10.1186/1471-2105-6-31. Smith, S.A., Moore, M.J., Brown, J.W., et al., 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150. https://doi.org/10.1186/s12862-015-0423-0. Smith, S.D., Pennell, M.W., Dunn, C.W., et al., 2020. Phylogenetics is the New Genetics (for Most of Biodiversity). Trends Ecol. Evol. 35, 415-425. https://doi.org/10.1016/j.tree.2020.01.005. Solis-Lemus, C., Ane, C., 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLOS Genetics 12, e1005896. https://doi.org/10.1371/journal.pgen.1005896. Solis-Lemus, C., Bastide, P., Ane, C., 2017. PhyloNetworks:a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292-3298. https://doi.org/10.1093/molbev/msx235. Stamatakis, A., 2006. RAxML-VI-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. https://doi.org/10.1093/bioinformatics/btl446. Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033. Steenwyk, J.L., Li, Y.N., Zhou, X.F., et al., 2023. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834-850. https://doi.org/10.1038/s41576-023-00620-x. Stull, G.W., Pham, K.K., Soltis, P.S., et al., 2023. Deep reticulation:the long legacy of hybridization in vascular plant evolution. Plant J. 114, 743-766. https://doi.org/10.1111/tpj.16142. Sukumaran, J., Holder, M.T., 2010. DendroPy:a Python library for phylogenetic computing. Bioinformatics 26, 1569-1571. https://doi.org/10.1093/bioinformatics/btq228. Tsoong, P.C., 1935. Preliminary study on Chinese Campanulaceae. Contributions from the Institute of Botany National Academy of Peiping 3, 61-118. Walker, J.F., Walker-Hale, N., Vargas, O.M., et al., 2019. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 7, e7747. https://doi.org/10.7717/peerj.7747. Wen, J., Harris, A., Ickert-Bond, S.M., et al., 2017. Developing integrative systematics in the informatics and genomic era, and calling for a global Biodiversity Cyberbank. J. Syst. Evol. 55, 308-321. https://doi.org/10.1111/jse.12270. Xie, S.Y., Lin, X.H., Wang, J.R., et al., 2024. Unraveling evolutionary pathways:allopolyploidization and introgression in polyploid Prunus (Rosaceae). bioRxiv. doi:10.1101/2024.09.24.613835. Xu, C., Hong, D.Y., 2021. Phylogenetic analyses confirm polyphyly of the genus Campanula (Campanulaceae s.str.), leading to a proposal for generic reappraisal. J. Syst. Evol. 59, 475-489. https://doi.org/10.1111/jse.12586. Xu, C., Jin, Z.T., Xie, S.Y., et al., 2023. Ortho2Web:a workflow for disentangling the roles of hybridization and allopolyploidization in reticulation within Campanulaceae. bioRxiv. doi:10.1101/2023.10.21.563444. Xue, C., Li, B.K., Lei, T.Y., et al., 2022. Advances on the origin and evolution of biodiversity. Biodiversity Science. 30, 22460. https://www.biodiversity-science.net/CN/Y2022/V30/I10/22460. Xue, T.T., Janssens, S.B., Liu, B.B., et al., 2024. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories:a case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Mol. Phylogenet. Evol. 190, 107956. https://doi.org/10.1016/j.ympev.2023.107956. Yang, Y., Smith, S.A., 2014. Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes:improving accuracy and matrix occupancy for phylogenomics. Mol. Biol. Evol. 31, 3081-3092. https://doi.org/10.1093/molbev/msu245. Yoo, K.O., Crowl, A.A., Kim, K.A., et al., 2018. Origins of East Asian Campanuloideae (Campanulaceae) diversity. Mol. Phylogenet. Evol. 127, 468-474. https://doi.org/10.1016/j.ympev.2018.04.040. Zhang, C., Rabiee, M., Sayyari, E., et al., 2018. ASTRAL-III:polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153. https://doi.org/10.1186/s12859-018-2129-y. |
[1] | Lang Li (李朗), Bing Liu (刘冰), Yu Song (宋钰), Hong-Hu Meng (孟宏虎), Xiu-Qin Ci (慈秀芹), John G. Conran, Rogier P.J. de Kok, Pedro Luís Rodrigues de Moraes, Jun-Wei Ye (叶俊伟), Yun-Hong Tan (谭运洪), Zhi-Fang Liu (刘志芳), Marlien van der Merwe, Henk van der Werff, Yong Yang (杨永), Jens G. Rohwer, Jie Li (李捷). Global advances in phylogeny, taxonomy and biogeography of Lauraceae [J]. Plant Diversity, 2025, 47(03): 341-364. |
[2] | Jing Chen, Jingjing Cao, Binglin Guo, Meixu Han, Zhipei Feng, Jinqi Tang, Xiaohan Mo, Junjian Wang, Qingpei Yang, Yuxin Pei, Yakov Kuzyakov, Junxiang Ding, Naoki Makita, Xitian Yang, Haiyang Zhang, Yong Zhao, Deliang Kong. Increased dependence on mycorrhizal fungi for nutrient acquisition under carbon limitation by tree girdling [J]. Plant Diversity, 2025, 47(03): 466-478. |
[3] | Yajun Wang, Hanchen Wang, Chao Ye, Zhiping Wang, Chongbo Ma, Dongliang Lin, Xiaohua Jin. Progress in systematics and biogeography of Orchidaceae [J]. Plant Diversity, 2024, 46(04): 425-434. |
[4] | Jun-Yi Zhang, Yue-Hong Cheng, Min Liao, Yu Feng, Sen-Long Jin, Ting-Mei He, Hai He, Bo Xu. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data [J]. Plant Diversity, 2024, 46(04): 435-447. |
[5] | Yue Zhao, Ya-Ping Chen, Bryan T. Drew, Fei Zhao, Maryam Almasi, Orzimat T. Turginov, Jin-Fei Xiao, Abdul G. Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang. Molecular phylogeny and taxonomy of Phlomoides (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data [J]. Plant Diversity, 2024, 46(04): 462-475. |
[6] | Shanni Cao, Xue Zhao, Zhuojin Li, Ranran Yu, Yuqi Li, Xinkai Zhou, Wenhao Yan, Dijun Chen, Chao He. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification [J]. Plant Diversity, 2024, 46(03): 372-385. |
[7] | Yunzhen Li, Liujie Jin, Xinyu Liu, Chao He, Siteng Bi, Sulaiman Saeed, Wenhao Yan. Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat [J]. Plant Diversity, 2024, 46(03): 386-394. |
[8] | Jin Zhao, Yuanjie Li, Xuanni Wang, Manru Li, Wenbin Yu, Jin Chen, Ling Zhang. Parasite-host network analysis provides insights into the evolution of two mistletoe lineages (Loranthaceae and Santalaceae) [J]. Plant Diversity, 2023, 45(06): 702-711. |
[9] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae) [J]. Plant Diversity, 2023, 45(01): 54-68. |
[10] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species [J]. Plant Diversity, 2022, 44(05): 505-517. |
[11] | Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang. Recent advances on phylogenomics of gymnosperms and a new classification [J]. Plant Diversity, 2022, 44(04): 340-350. |
[12] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data [J]. Plant Diversity, 2022, 44(03): 300-307. |
[13] | Yanliang Wang, Xinhua He, Fuqiang Yu. Non-host plants: Are they mycorrhizal networks players? [J]. Plant Diversity, 2022, 44(02): 127-134. |
[14] | Zhen-Yu Lv, Ziyoviddin Yusupov, Dai-Gui Zhang, Ya-Zhou Zhang, Xiao-Shuang Zhang, Nan Lin, Komiljon Tojibaev, Hang Sun, Tao Deng. Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China [J]. Plant Diversity, 2022, 44(02): 222-230. |
[15] | Zhi-Jian Yin, Ze-Huan Wang, Norbert Kilian, Ying Liu, Hua Peng, Ming-Xu Zhao. Mojiangia oreophila (Crepidinae, Cichorieae, Asteraceae), a new species and genus from Mojiang County, SW Yunnan, China, and putative successor of the maternal Faberia ancestor [J]. Plant Diversity, 2022, 44(01): 83-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||