研究论文

利用腊叶标本初探豹子花属植物的性表达及其与个体大小的关系

  • 龚强帮1 ,
  • 李志敏1** ,
  • 彭德力2 ,
  • 牛洋2 ,
  • 孙航2 ,
  • 张志强2、3
展开
  • 1 云南师范大学生命科学学院,昆明650092; 2 中国科学院昆明植物研究所东亚植物多样性与生物地理学
    重点实验室,昆明650201; 3 中国科学院青藏高原研究所昆明部, 昆明650201

收稿日期: 2014-03-13

  网络出版日期: 2014-07-17

基金资助

国家自然科学基金 (31100179; 31360049);中国科学院“西部之光”人才培养计划“西部博士资助项目”;中国博士后科学基金特别资助 (2012T50787)

Male Flowers and Relationship between Plant Size and Sex Expression in Herbaria of Nomocharis Species (Liliaceae)

  • GONG Qiang-Bang-1 ,
  • LI Zhi-Min-1** ,
  • PENG De-Li-2 ,
  • NIU Yiang-2 ,
  • SUN Hang-2 ,
  • ZHANG Zhi-Qiang-2、3
Expand
  • 1 School of Life Sciences, Yunnan Normal University, Kunming 650092, China;  2 Key Laboratory for Plant Biodiversity and
    Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
    3 Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming 650201, China

Received date: 2014-03-13

  Online published: 2014-07-17

Supported by

国家自然科学基金 (31100179; 31360049);中国科学院“西部之光”人才培养计划“西部博士资助项目”;中国博士后科学基金特别资助 (2012T50787)

 

摘要

植物性系统进化过程中很少有植物通过雌性败育的方式实现性系统由联合走向分离,然而雄花在百合科植物中大量存在,引起了研究者的关注。本研究利用百合科豹子花属植物的腊叶标本,获取它们的花性别表型、花大小、株高以及分布海拔等信息探讨豹子花属植物的性表达样式,并对样本量较多的开瓣豹子花、云南豹子花、多斑豹子花和豹子花四个种的性表达及其与个体大小的关系进行分析。研究结果表明:1) 六种豹子花属植物标本中都有雄花存在;根据雄性花和两性花的不同组合,形成雄性个体、两性花个体,和雄花两性花同株个体三种植株类型;2) 个体大小(株高)和分布海拔之间不存在相关关系,和植株性别类型相关,即雄性个体一般显著小于具有雌性功能的两性花个体和雄花两性花同株个体;3) 个体大小与花大小、每个个体开花总数和雌花数量成显著的正相关关系,而与每个个体的雄花数量无显著的相关关系。本研究更正了一直以来对豹子花属植物性系统的错误认识,首次报道雄花在豹子花属植物中普遍存在,并指出雄花和雄性个体的出现是大小依赖性分配的结果。同时,以研究实例证明了利用腊叶标本开展植物性系统多样性的可行性。

本文引用格式

龚强帮1 , 李志敏1** , 彭德力2 , 牛洋2 , 孙航2 , 张志强2、3 . 利用腊叶标本初探豹子花属植物的性表达及其与个体大小的关系[J]. Plant Diversity, 2015 , 37(01) : 11 -20 . DOI: 10.7677/ynzwyj201514040

Abstract

Despite the general rarity of femalesterile reproductive systems, male flowers are widespread in Liliaceae. Nomocharis (Liliaceae) consists of ca. seven species which have been traditionally classified as hermaphrodite. However, our preliminary investigation suggested that male flowers may occur frequently in this genus. We got data of the flower sex phenotypes, flower size, plant height and altitude by observing and measuring specimens of Nomocharis from several herbaria (PE, KUN, HITBC CDBI) in China, and then used them to determine the sex distribution and to analyze the relationships between plant size and flower size, sex expression. We found that male flowers occurred in all six studied Nomocharis species and different combinations of hermaphroditic and male flowers at plant level resulted in complex sex expression. Of four further studied species, male plants were significantly smaller than plants with hermaphroditic flowers in three species. Plant height, which was not related to altitude, but not sex phenotype has significant effects on flower size. The number of total flowers and hermaphroditic flowers per plant increased with plant size. However, the number of male flowers was independently of size. Our study suggested resources availability (ie. plant size) determined the sex phenotypes of individuals. We highlighted the occurrence of male flowers in genus Nomocharis and suggested further field studies are absolutely necessary. Furthermore, this study provides a case study to better use herbarium specimens as prerequisites for field researches of floral sexual diversity.

参考文献

Bierzychudek P, 1984. Determinants of gender in jackinthepulpit:the influence of plant size and reproductive history[J]. Oecologia, 65: 14—18
Barbara J, Gliddon C, 1999. Reproductive biology and genetic structure in Lloydia serotina[J]. Plant Ecology, 141: 151—161
Barrett SCH, 1992. Gender variation and the evolution of dioecy in Wurmbea dioica (Liliaceae) [J]. Journal of Evolutionary Biology, 5: 423—444
Barrett SCH, 2002. The evolution of plant sexual diversity[J]. Nature Reviews Genetics, 3 (4): 274—284
Barrett SCH, 2010. Understanding plant reproductive diversity[J].  Philosophical Transactions of the Royal Society of London Ser. B, 365: 99—109
Barrett SCH, Case AC, 2006. The ecology and evolution of gender strategies in plants: the case of Australian Wurmbea (Colchicaceae) [J]. Australian Journal of Botany, 54: 417—433
Cao GX, Kudo G, 2008. Sizedependent sex allocation in a monocarpic perennial herb, Cardiocrinum cordatum (Liliaceae) [J]. Plant Ecology, 194: 99—107
Gao YD, Hohenegger M, Harris A et al. 2012. A new species in the genus Nomocharis Franchet (Liliaceae): evidence that brings the genus Nomocharis into Lilium[J]. Plant Systematics and Evolution, 298: 69—85
Jones B, Gliddon C, 1999. Reproductive biology and genetic structure in Lloydia serotina[J]. Plant Ecology, 141: 151—161
Krner C, Neumayer M, MenendezRiedl SP et al., 1989. Functional morphology of mountain plants[J]. Flora, 182: 353—383
Klinkhamer PG, de Jong TJ, Nell H, 1997. Sex and size in cosexual plants[J]. Trends in Ecology & Evolution, 12: 260—265
Lloyd DG, Bawa KS, 1984. Modification of the gender of seed plant in varying conditions[J]. Evolutionary Biolog, 17: 255—338
Liang SY (梁松筠), 1984. Studies on the genus Nomocharis (Lliaceae) [J]. Bulletin of Botanical Resertch (植物研究), 4 (2): 163—178 (in Chines with English abstract)
Liang SY, Tamura M, 2000. Nomocharis[A]. // Wu ZY, Raven P eds.,  Flora of China[M]. Beijing: Science Press, 24: 149—150
Lloyd DG, 1979. Parental strategies of angiosperms[J]. New Zealand Journal of Botany, 17: 595—606
Matsuura H, 1935. On karyoecotypes of Fritillaria camschatcensis (L.) KerGawler. J. Fac. Sci. Hokkaido Imp. Univ., series V, 3 (5): 219—232
Maki M, 1993. Floral sex ratio variation in Hermaphrodites of Gynodioecious Chionographis japonica var. kurohimensis Ajima et satomi (Liliaceae) [J]. Journal of Plant Research, 106: 181—186
Myers N, Mittermeier RA, Mittermeier CG et al., 2000. Biodiversity hotspots for conservation priorities[J]. Nature, 403: 853—858
Manicacci D, Despres L, 2001. Male and hermaphrodite flowers in the alpine lily Lloydia serotina[J]. Canadian Journal of Botany, 79: 1107—1114
Mancuso E, Peruzzi L, 2010. Maleindividuals in cultivated Fritillaria persica L. (Liliaceae): real androdioecy or gender disphasy?[J]. Turkish Journal of Botany, 34: 435—440
Niu Y, Yang Y, Zhang ZQ et al., 2011. Floral closure induced by pollination in Gynodioecious Cyananthus delavayi (Campanulaceae): effects of pollen load and type, floral morph and fitness consequences[J]. Annals of Botany, 108: 1257—1268
Policansky D, 1981.Sex choice and the size advantage model in jackinthepulpit  (Arisaema triphyllum) [J]. Proceedings of the National Academy of Sciences of the USA, 78: 1306—1308
Peruzzi L, Tison JM, Peterson A et al., 2008. On the phylogenetic position and taxonomic value of Gagea trinervia (Viv.) Greuter and G sect.  Anthericoides A. Terracc. (Liliaceae) [J]. Taxon, 57: 1201—1214
Peng DL, Zhang ZQ, Xu B et al., 2012. Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China[J]. Alpine Botany, 122: 65—73
Peruzzi L, Manciso E, Gargano D, 2012. Male are cheaper,or the extreme consequence of size/agedependent sex allocation:sexist gender diphasy in Fritillaria montana (Liliaceae) [J]. Botanical Journal of the Linnean Society, 168: 323—333
Peruzzi L, 2012. Male flowers in Liliaceae are more frequent than previously thought[J]. Bocconea, 24: 301—304
Schlessman MA, 1991. Size, gender, and sex change in dwarf ginseng, Panax trifolium (Araliaceae) [J]. Oecologia, 87: 588—595
VallejoMarín M, Rausher MD, 2007. Selection through female fitness helps to explain the Maintenance of male flowers[J]. American Naturalist, 169: 563—568
Wan J (万娟), Zhou SD (周颂东), 2011. Karyotypes of twentyfive populations of thirteen species in Nomocharis and Lilium[J]. Plant Diversity and Resources (植物分类与资源学报), 33(5): 477—494
Wang LL (王林林), Zhao MF (赵明富), Wang Y (王赟) et al., 2011. A preliminary study on geographical variations in floral traits of Halenia elliptica (Gentianaceae) based on Herbaria[J]. Plant Diversity and Resources (植物分类与资源学报), 33: 503—508
Wolfe LM, 1998. Regulation of sex expression in desert and Mediterranean populations of an andromonoecious plant (Gagea chlorantha Liliaceae) [J]. Israel Journal of Plant Sciences, 46: 17—25
Yampolsky C, Yampolsky H, 1922. Distribution of sex form in the phanerogamic flora[J]. Bibliotheca Genetica, 3: 1—62
Zhang DY (张大勇), 2004. Plant LifeHistory Evolution and Reproductive Ecology[M]. Beijing: Science Press
Zhang DY, 2006. Evolutionarily stable reproductive investment and sex allocation in plants[A]. // Harder L, Barrett SCH eds., Ecology and Evolution of Flowers[M]. Oxford: Oxford University Press, 41— 60
Zhang DY, Jiang XH, 2002. Sizedependent resource allocation and sex allocation in herbaceous perennial plants[J]. Journal of Evolutionary Biology, 15: 74—83
Zhang ZQ, Zhu XF, Sun H et al., 2014. Sizedependent gender modification in Lilium apertum (Liliaceae): Does this species exhibit gender diphasy?[J]. Annals of Botany, 114 (3): 441—453
Zhao F (赵方), Yang YP (杨永平), 2008. Reproductive allocation in a dioecious perennial Oxyria sinensis (Polygonaceae) along altitudinal gradients[J]. Journal of Systematics and Evolution (植物分类学报), 46: 830—835 (in Chinese with English abstract)
Zhou Z, Hong DY, Niu Y et al., 2013. Phylogenetic and biogeographic analyses of the SinoHimalayan endemic genus Cyananthus (Campanulaceae) and implications for the evolution of its sexual system[J]. Molecular Phylogenetics and Evolution, 68 (3): 482—497

文章导航

/