Plant Diversity ›› 2016, Vol. 38 ›› Issue (06): 264-270.DOI: 10.1016/j.pld.2016.12.001
Douglas E. Soltisa,b,c, Pamela S. Soltisa,b
收稿日期:
2016-10-24
修回日期:
2016-11-30
出版日期:
2016-12-25
发布日期:
2021-11-05
通讯作者:
Douglas E. Soltis
基金资助:
Douglas E. Soltisa,b,c, Pamela S. Soltisa,b
Received:
2016-10-24
Revised:
2016-11-30
Online:
2016-12-25
Published:
2021-11-05
Contact:
Douglas E. Soltis
Supported by:
摘要: The current global challenges that threaten biodiversity are immense and rapidly growing. These biodiversity challenges demand approaches that meld bioinformatics, large-scale phylogeny reconstruction, use of digitized specimen data, and complex post-tree analyses (e.g. niche modeling, niche diversification, and other ecological analyses). Recent developments in phylogenetics coupled with emerging cyberinfrastructure and new data sources provide unparalleled opportunities for mobilizing and integrating massive amounts of biological data, driving the discovery of complex patterns and new hypotheses for further study. These developments are not trivial in that biodiversity data on the global scale now being collected and analyzed are inherently complex. The ongoing integration and maturation of biodiversity tools discussed here is transforming biodiversity science, enabling what we broadly term “next-generation” investigations in systematics, ecology, and evolution (i.e., “biodiversity science”). New training that integrates domain knowledge in biodiversity and data science skills is also needed to accelerate research in these areas. Integrative biodiversity science is crucial to the future of global biodiversity. We cannot simply react to continued threats to biodiversity, but via the use of an integrative, multifaceted, big data approach, researchers can now make biodiversity projections to provide crucial data not only for scientists, but also for the public, land managers, policy makers, urban planners, and agriculture.
Douglas E. Soltis, Pamela S. Soltis. Mobilizing and integrating big data in studies of spatial and phylogenetic patterns of biodiversity[J]. Plant Diversity, 2016, 38(06): 264-270.
Douglas E. Soltis, Pamela S. Soltis. Mobilizing and integrating big data in studies of spatial and phylogenetic patterns of biodiversity[J]. Plant Diversity, 2016, 38(06): 264-270.
Allen, J., Germain-Aubrey, C., Barve, N., Neubig, K.M., Majure, L., Whitten, W.M., Abbott, J.R., Laffan, S.W., Mishler, B., Owens, H., Guralnick, R., Soltis, D.E., Soltis P.S. Spatial phylogenetics of the vascular plants of Florida: the effects of tree uncertainty and ultrametricity. Glob. Ecol. Biogeogr., in prep. Cavner, J.A., Stewart, A.M., Grady, C.J., Beach, J.H., 2012. An innovative web processing services based GIS architecture for global biogeographic analyses of species distributions. OSGeo J. 10, 15-25. Collins, T., Kearney, M., Maddison, D., 2013 Mar 7. The ideas lab concept, assembling the tree of life, and AVAToL. PLOS Curr. Tree Life. Edition 1. Darwin, C., 1859. The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Cambridge Univ. Press, Cambridge, UK. Dobzhansky, T., 1973. Nothing in biology makes sense except in the light of evolution. Amer. Biol. Teach. 35, 125-129. Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677-697. Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1-10. Faith, D.P., 2007. Phylogeny and conservation. Syst. Biol. 56, 690-694. Faith, D.P., 2008. Phylogenetic diversity and conservation. In: Carroll, S.P., Fox, C.W.(Eds.), Conservation Biology: Evolution in Action. Oxford University Press, Oxford, UK, pp. 99-115. Faith, D.P., Magallón, S., Hendry, A.P., Conti, E., Yahara, T., Donoghue, M.J., 2010. Ecosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Op. Env. Sust. 2, 66-74. Gonzalez-Orozco, C.E., Ebach, M.C., Laffan, S., Thornhill, A.H., Knerr, N.J., SchmidtLebuhn, A.N., Cargill, C.C., Clements, M., Nagalingum, N.S., Mishler, B.D., Miller, J.T., 2014. Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. Plos One 9 e92558. Gonzalez-Orozco, C.E., Pollock, L.J., Thornhill, A.H., Mishler, B.D., Knerr, N., Laan, S.W., Miller, J.T., Rosauer, D.F., Faith, D.P., Nipperess, D.A., Kujala, H., Linke, S., Butt, N., Külheim, C., Crisp, M.D., Gruber, B., 2016. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110-1114. Harmon, L.J., Baumes, J., Hughes, C., Soberon, J., Specht, C.D., Turner, W., Thacker, R.W., 2013. Arbor: comparative analysis workflows for the tree of life.Plos Curr. 5 ecurrents.tol.099161de5eabdee073fd3d21a44518dc. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M., Crandall, K.A., Deng, J., Drew, B.T., Gazis, R., Gude, K., Hibbett, D.S., Katz, L.A., Laughinghouse, H.D., McTavish, E.J., Midford, P.E., Owen, C.L., Reed, R.H., Rees, J.A., Soltis, D.E., Williams, T., Cranston, K.A., 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. U.S.A. 112, 12764-12769. Laffan, S.W., Lubarsky, E., Rosauer, D.F., 2010. Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33, 643-647. Matsunaga, A., Thompson, A., Figueiredo, R.J., Germain-Aubrey, C.C., Collins, M., Beaman, R.S., MacFadden, B.J., Riccardi, G., Soltis, P.S., Page, L.M., Fortes, J.A.B., 2013. A Computational- and Storage-Cloud for Integration of Biodiversity Collections. In: Proceedings of the 2013 IEEE 9th International Conference on eScience, Beijing, China, pp. 78-87. http://dx.doi.org/10.1109/eScience.2013.48. Mishler, B.D., Knerr, N., González-Orozco, C.E., Thornhill, A.H., Laffan, S.W., Miller, J.T., 2014. Phylogenetic measures of biodiversity and neo- and paleoendemism in Australian Acacia. Nat. Comm. 5, 5473. Muñoz, M.E.S., Giovanni, R., Siqueira, M.F., Sutton, T., Brewer, P., Pereira, R.S., Canhos, D.A.L., Canhos, V.P., 2009. openModeller: a generic approach to species' potential distribution modelling. GeoInformatica. http://dx.doi.org/10.1007/s10707-009-0090-7. Noss, R.F., Platt, W.J., Sorrie, B.A., Weakley, A.S., Means, D.B., Costanza, J., Peet, R.K., 2015. How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal plain. Divers. Distrib. 21, 236-244. Page, L.M., MacFadden, B.J., Fortes, J.A., Soltis, P.S., Riccardi, G., 2015. Digitization of biodiversity collections reveals biggest data on biodiversity. BioScience 65, 841-842. Peterson, A.T., 2003. Predicting the geography of species' invasions via ecological niche modeling. Quart. Rev. Biol. 78, 419-433. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259. Stebbins, G.L., 1950. Variation and Evolution in Plants. Columbia University Press. |
[1] | Mustaqeem Ahmad, Ya-Huang Luo (罗亚皇), Sonia Rathee, Robert A. Spicer, Jian Zhang (张健), Moses C. Wambulwa, Guang-Fu Zhu (朱光福), Marc W. Cadotte, Zeng-Yuan Wu (吴增源), Shujaul Mulk Khan, Debabrata Maity, De-Zhu Li (李德铢), Jie Liu (刘杰). Multifaceted plant diversity patterns across the Himalaya: Status and outlook[J]. Plant Diversity, 2025, 47(04): 529-543. |
[2] | Ibrokhimjon Ergashov, Ziyoviddin Yusupov, Alireza Dolatyari, Mina Khorasani, İsmail Eker, Nazgul Turdumatova, Georgy Lazkov, Farruhbek Rasulov, Hang Sun, Tao Deng, Komiljon Tojibaev. New insights into the molecular phylogeny and biogeographical history of Allium subgenus Melanocrommyum (Amaryllidaceae) based on plastome and nuclear sequences[J]. Plant Diversity, 2025, 47(04): 561-575. |
[3] | Fei-Fei Li, Qiang Hao, Xia Cui, Ruo-Zhu Lin, Bin-Sheng Luo, Jin-Shuang Ma. Global invasive alien plant management lists: Assessing current practices and adapting to new demands[J]. Plant Diversity, 2025, 47(04): 666-680. |
[4] | Lang Li (李朗), Bing Liu (刘冰), Yu Song (宋钰), Hong-Hu Meng (孟宏虎), Xiu-Qin Ci (慈秀芹), John G. Conran, Rogier P.J. de Kok, Pedro Luís Rodrigues de Moraes, Jun-Wei Ye (叶俊伟), Yun-Hong Tan (谭运洪), Zhi-Fang Liu (刘志芳), Marlien van der Merwe, Henk van der Werff, Yong Yang (杨永), Jens G. Rohwer, Jie Li (李捷). Global advances in phylogeny, taxonomy and biogeography of Lauraceae[J]. Plant Diversity, 2025, 47(03): 341-364. |
[5] | Ziwei Chen, Dongsheng Zhao, Siqi Deng, Yu Zhu, Ke Wang, Shunsheng Wang, Du Zheng. Resistance of plant diversity to road disturbance: Evidence from the Tibetan Plateau[J]. Plant Diversity, 2025, 47(03): 394-402. |
[6] | Xue Wang, Xinrui Liu, Shuang Chen, Jiang Zhu, Yanqi Yuan, Rong Zhu, Kaixi Chen, Xue Yang, Xiaochun Wang, Weiyi Mo, Ruili Wang, Shuoxin Zhang. Elevational variation in anatomical traits of the first-order roots and their adaptation mechanisms[J]. Plant Diversity, 2025, 47(02): 291-299. |
[7] | Jian Zhang, Hong Qian, Xinyang Wang. An online version and some updates of R package U.Taxonstand for standardizing scientific names in plant and animal species[J]. Plant Diversity, 2025, 47(01): 166-168. |
[8] | Wei Gu, Ting Zhang, Shui-Yin Liu, Qin Tian, Chen-Xuan Yang, Qing Lu, Xiao-Gang Fu, Heather R. Kates, Gregory W. Stull, Pamela S. Soltis, Douglas E. Soltis, Ryan A. Folk, Robert P. Guralnick, De-Zhu Li, Ting-Shuang Yi. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae[J]. Plant Diversity, 2024, 46(06): 683-697. |
[9] | José Luiz Alves Silva, Alexandre Souza, Angela Pierre Vitória. Detection of functional diversity gradients and their geoclimatic filters is sensitive to data types (occurrence vs. abundance) and spatial scales (sites vs. regions)[J]. Plant Diversity, 2024, 46(06): 732-743. |
[10] | Yanwei Guan, Yongru Wu, Zheng Cao, Zhifeng Wu, Fangyuan Yu, Haibin Yu, Tiejun Wang. Island biogeography theory and the habitat heterogeneity jointly explain global patterns of Rhododendron diversity[J]. Plant Diversity, 2024, 46(05): 565-574. |
[11] | Ling-Yun Wu, Shuang-Quan Huang, Ze-Yu Tong. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats (Fagopyrum) in the Hengduan Mountains[J]. Plant Diversity, 2024, 46(05): 661-670. |
[12] | Jun-Yi Zhang, Yue-Hong Cheng, Min Liao, Yu Feng, Sen-Long Jin, Ting-Mei He, Hai He, Bo Xu. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data[J]. Plant Diversity, 2024, 46(04): 435-447. |
[13] | Fangbing Li, Hong Qian, Jordi Sardans, Dzhamal Y. Amishev, Zixuan Wang, Changyue Zhang, Tonggui Wu, Xiaoniu Xu, Xiao Tao, Xingzhao Huang. Evolutionary history shapes variation of wood density of tree species across the world[J]. Plant Diversity, 2024, 46(03): 283-293. |
[14] | Xu Chen, Haining Lu, Zhengru Ren, Yuqiu Zhang, Ruoxuan Liu, Yunhai Zhang, Xingguo Han. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland[J]. Plant Diversity, 2024, 46(02): 256-264. |
[15] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes)[J]. Plant Diversity, 2023, 45(06): 630-684. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||