南京林业大学学报(自然版) ›› 2024, Vol. 48 ›› Issue (04): 104-112.
钟浩, 王楚虹, 林文树
摘要: 【目的】应用遥感技术进行树种识别已成为森林调查的重要手段之一,但利用近地面遥感手段进行树种识别时存在地基激光雷达(LiDAR)点云数据树冠上层信息不足和无人机影像树冠下层的信息缺失的问题,联合多源遥感数据快速准确识别树种,对研究和保护森林资源具有重要意义。【方法】以哈尔滨市东北林业大学城市林业示范基地中樟子松(Pinus sylvestrisvar.mongolica)、黑皮油松(P.tabuliformis var.mukdensis)、水曲柳(Fraxinus mandshurica)、胡桃楸(Juglans mandshurica)为研究对象进行树种识别研究,获取地基LiDAR与无人机影像数据,通过对高重叠度无人机影像进行处理得到无人机影像点云,将无人机影像点云与地基LiDAR点云数据进行配准融合,对融合后数据进行单木分割得到单木点云,基于单木点云提取形状特征、结构特征、树干颜色特征和树冠颜色特征,借助支持向量机分类算法进行树种识别并结合随机森林算法对不同特征的识别能力进行了分析。【结果】利用所有特征进行树种识别取得试验最优结果,其总精度和Kappa系数分别为93.48%和0.91。相较于其他对比方案,其总精度和Kappa系数分别提升4.35~16.31个百分点和0.06~0.22。【结论】提出了一种地基LiDAR数据与无人机影像点云数据进行融合的树种识别方法,该方法能够在一定程度上弥补树种识别中特征提取时地基LiDAR点云数据树冠上层信息不足,以及无人机影像树冠下层信息缺失等问题。充分利用多源数据所包含的丰富信息进行树种识别,可有效提高树种识别精度。
中图分类号: